高考数学真题专题归纳专题18解析几何综合含解析理

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学真题专题归纳专题18解析几何综合含解析理

专题18 解析几何综合 ‎【2020年】‎ ‎1.(2020·新课标Ⅰ)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.‎ ‎(1)求E的方程;‎ ‎(2)证明:直线CD过定点.‎ ‎【答案】(1);(2)证明详见解析.‎ ‎【解析】‎ ‎(1)依据题意作出如下图象:‎ 由椭圆方程可得:, ,‎ ‎,‎ ‎,‎ 椭圆方程为:‎ ‎(2)证明:设,‎ 则直线AP的方程为:,即:‎ 57‎ 联立直线AP的方程与椭圆方程可得:,整理得:‎ ‎,解得:或 将代入直线可得:‎ 所以点C的坐标为.‎ 同理可得:点D的坐标为 直线CD的方程为:,‎ 整理可得:‎ 整理得:‎ 故直线CD过定点 ‎【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.‎ ‎2.(2020·新课标Ⅱ)已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.‎ ‎(1)求C1的离心率;‎ ‎(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.‎ 57‎ ‎【答案】(1);(2),.‎ ‎【解析】‎ ‎(1),轴且与椭圆相交于、两点,‎ 则直线的方程为,‎ 联立,解得,则,‎ 抛物线的方程为,联立,‎ 解得,,‎ ‎,即,,‎ 即,即,‎ ‎,解得,因此,椭圆的离心率为;‎ ‎(2)由(1)知,,椭圆的方程为,‎ 联立,消去并整理得,‎ 57‎ 解得或(舍去),‎ 由抛物线的定义可得,解得.‎ 因此,曲线的标准方程为,‎ 曲线的标准方程为.‎ ‎【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.‎ ‎3.(2020·新课标Ⅲ)已知椭圆的离心率为,,分别为的左、右顶点.‎ ‎(1)求C的方程;‎ ‎(2)若点P在C上,点Q在直线上,且,,求的面积.‎ ‎【答案】(1);(2).‎ ‎【解析】‎ ‎(1)‎ ‎,,‎ 根据离心率,‎ 解得或(舍),‎ 的方程为:,‎ 即;‎ ‎(2)点P在C上,点Q在直线上,且,,‎ 57‎ 过点P作轴垂线,交点为M,设与轴交点为N 根据题意画出图形,如图 ‎,,,‎ 又,,‎ ‎,‎ 根据三角形全等条件“”,‎ 可得:,‎ ‎,‎ ‎,‎ ‎,‎ 设P点为,‎ 可得P点纵坐标为,将其代入,‎ 可得:,‎ 解得:或,‎ 点为或,‎ ‎①当点为时,‎ 故,‎ 57‎ ‎,‎ ‎,‎ 可得:Q点为,‎ 画出图象,如图 ‎,,‎ 可求得直线AQ的直线方程为:,‎ 根据点到直线距离公式可得P到直线AQ的距离为:,‎ 根据两点间距离公式可得:,‎ 面积为:;‎ ‎②当P点时,‎ 故,‎ ‎,‎ ‎,‎ 可得:Q点为,‎ 画出图象,如图 57‎ ‎,,‎ 可求得直线AQ的直线方程为:,‎ 根据点到直线距离公式可得P到直线AQ的距离为:,‎ 根据两点间距离公式可得:,‎ 面积为:,‎ 综上所述,面积为:.‎ ‎【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.‎ ‎4.(2020·北京卷)已知椭圆过点,且.‎ ‎(Ⅰ)求椭圆C的方程:‎ ‎(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.‎ ‎【答案】(Ⅰ);(Ⅱ)1.‎ ‎【解析】‎ ‎(1)设椭圆方程为:,由题意可得:‎ 57‎ ‎,解得:,‎ 故椭圆方程为:.‎ ‎(2)设,,直线的方程为:,‎ 与椭圆方程联立可得:,‎ 即:,‎ 则:.‎ 直线MA的方程为:,‎ 令可得:,‎ 同理可得:.‎ 很明显,且:,注意到:‎ ‎,‎ 而:‎ ‎,‎ 故.‎ 57‎ 从而.‎ ‎【点睛】解决直线与椭圆的综合问题时,要注意:‎ ‎(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;‎ ‎(2)强化有关直线与椭圆联立得出一元二次方程后运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.‎ ‎5.(2020·江苏卷)在△ABC中,角A,B,C的对边分别为a,b,c,已知.‎ ‎(1)求的值;‎ ‎(2)在边BC上取一点D,使得,求的值.‎ ‎【答案】(1);(2).‎ ‎【解析】‎ ‎(1)由余弦定理得,所以.‎ 由正弦定理得.‎ ‎(2)由于,,所以.‎ 由于,所以,所以 所以 ‎.‎ 57‎ 由于,所以.‎ 所以.‎ ‎【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.‎ ‎6.(2020·江苏卷)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.‎ ‎(1)求△AF1F2的周长;‎ ‎(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;‎ ‎(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.‎ ‎【答案】(1)6;(2)-4;(3)或.‎ ‎【解析】‎ ‎(1)∵椭圆的方程为 ‎∴,‎ 57‎ 由椭圆定义可得:.‎ ‎∴的周长为 ‎(2)设,根据题意可得.‎ ‎∵点在椭圆上,且在第一象限,‎ ‎∴‎ ‎∵准线方程为 ‎∴‎ ‎∴,当且仅当时取等号.‎ ‎∴的最小值为.‎ ‎(3)设,点到直线的距离为.‎ ‎∵,‎ ‎∴直线的方程为 ‎∵点到直线的距离为,‎ ‎∴‎ ‎∴‎ ‎∴①‎ ‎∵②‎ ‎∴联立①②解得,.‎ 57‎ ‎∴或.‎ ‎【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据推出是解答本题的关键.‎ ‎7.(2020·山东卷)已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,‎ ‎(1)求C的方程;‎ ‎(2)点N为椭圆上任意一点,求△AMN的面积的最大值.‎ ‎【答案】(1);(2)12.‎ ‎【解析】‎ ‎(1)由题意可知直线AM的方程为:,即.‎ 当y=0时,解得,所以a=4,‎ 椭圆过点M(2,3),可得,‎ 解得b2=12.‎ 所以C的方程:.‎ ‎(2)设与直线AM平行的直线方程为:,‎ 如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.‎ 57‎ 联立直线方程与椭圆方程,‎ 可得:,‎ 化简可得:,‎ 所以,即m2=64,解得m=±8,‎ 与AM距离比较远的直线方程:,‎ 直线AM方程为:,‎ 点N到直线AM的距离即两平行线之间的距离,‎ 利用平行线之间的距离公式可得:,‎ 由两点之间距离公式可得.‎ 所以△AMN的面积的最大值:.‎ ‎【点睛】解决直线与椭圆的综合问题时,要注意:‎ ‎(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;‎ ‎(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.‎ ‎8.(2020·天津卷)已知椭圆的一个顶点为,右焦点为 57‎ ‎,且,其中为原点.‎ ‎(Ⅰ)求椭圆方程;‎ ‎(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.‎ ‎【答案】(Ⅰ);(Ⅱ),或.‎ ‎【解析】‎ ‎(Ⅰ)椭圆的一个顶点为,‎ ‎,‎ 由,得,‎ 又由,得,‎ 所以,椭圆的方程为;‎ ‎(Ⅱ)直线与以为圆心的圆相切于点,所以,‎ 根据题意可知,直线和直线的斜率均存在,‎ 设直线的斜率为,则直线的方程为,即,‎ ‎,消去,可得,解得或.‎ 将代入,得,‎ 所以,点的坐标为,‎ 因为为线段的中点,点的坐标为,‎ 所以点的坐标为,‎ 由,得点的坐标为,‎ 57‎ 所以,直线的斜率为,‎ 又因为,所以,‎ 整理得,解得或.‎ 所以,直线的方程为或.‎ ‎【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.‎ ‎9.(2020·浙江卷)如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于M(B,M不同于A).‎ ‎(Ⅰ)若,求抛物线的焦点坐标;‎ ‎(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.‎ ‎【答案】(Ⅰ);(Ⅱ)‎ ‎【解析】‎ ‎(Ⅰ)当时,的方程为,故抛物线的焦点坐标为;‎ ‎(Ⅱ)设,‎ 57‎ 由,‎ ‎,‎ 由在抛物线上,所以,‎ 又,‎ ‎,, ‎ ‎.‎ 由即 ‎,‎ 所以,,,‎ 所以,的最大值为,此时.‎ 法2:设直线,.‎ 将直线的方程代入椭圆得:,‎ 所以点的纵坐标为.‎ 将直线的方程代入抛物线得:,‎ 所以,解得,因此,‎ 57‎ 由解得,‎ 所以当时,取到最大值为.‎ ‎【2019年】‎ ‎12.【2019年高考全国Ⅱ卷】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.‎ ‎(1)证明:BE⊥平面EB1C1;‎ ‎(2)若AE=A1E,求二面角B–EC–C1的正弦值.‎ ‎【答案】(1)证明见解析;(2).‎ ‎【解析】(1)由已知得,平面,平面,‎ 故.‎ 又,所以平面.‎ ‎(2)由(1)知.由题设知≌,所以,‎ 故,.‎ 以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系D–xyz,‎ 57‎ 则C(0,1,0),B(1,1,0),(0,1,2),E(1,0,1),,,.‎ 设平面EBC的法向量为n=(x,y,x),则 即 所以可取n=.‎ 设平面的法向量为m=(x,y,z),则 即 所以可取m=(1,1,0).‎ 于是.‎ 所以,二面角的正弦值为.‎ ‎13.【2019年高考全国Ⅲ卷】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.‎ ‎(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;‎ ‎(2)求图2中的二面角B−CG−A的大小.‎ 57‎ ‎【答案】(1)见解析;(2).‎ ‎【解析】(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面.‎ 由已知得ABBE,ABBC,故AB平面BCGE.‎ 又因为AB平面ABC,所以平面ABC平面BCGE.‎ ‎(2)作EHBC,垂足为H.因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC.‎ 由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=.‎ 以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系H–xyz,‎ 则A(–1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,–1,0).‎ 设平面ACGD的法向量为n=(x,y,z),则 即 所以可取n=(3,6,–).‎ 57‎ 又平面BCGE的法向量可取为m=(0,1,0),所以.‎ 因此二面角B–CG–A的大小为30°.‎ ‎14.【2019年高考北京卷】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.‎ ‎(1)求证:CD⊥平面PAD;‎ ‎(2)求二面角F–AE–P的余弦值;‎ ‎(3)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.‎ ‎【答案】(1)见解析;(2);(3)见解析.‎ ‎【解析】(1)因为PA⊥平面ABCD,所以PA⊥CD.‎ 又因为AD⊥CD,所以CD⊥平面PAD.‎ ‎(2)过A作AD的垂线交BC于点M.‎ 因为PA⊥平面ABCD,所以PA⊥AM,PA⊥AD.‎ 如图建立空间直角坐标系A−xyz,则A(0,0,0),B(2,1,0),C(2,2,0),D(0,2,0),P(0,0,2).‎ 因为E为PD的中点,所以E(0,1,1).‎ 所以.‎ 所以.‎ 设平面AEF的法向量为n=(x,y,z),则 即 57‎ 令z=1,则.‎ 于是.‎ 又因为平面PAD的法向量为p=(1,0,0),所以.‎ 由题知,二面角F−AE−P为锐角,所以其余弦值为.‎ ‎(3)直线AG在平面AEF内.‎ 因为点G在PB上,且,‎ 所以.‎ 由(2)知,平面AEF的法向量.‎ 所以.‎ 所以直线AG在平面AEF内.‎ ‎15.【2019年高考天津卷】如图,平面,,.‎ ‎(1)求证:平面;‎ ‎(2)求直线与平面所成角的正弦值;‎ ‎(3)若二面角的余弦值为,求线段的长.‎ 57‎ ‎【答案】(1)见解析;(2);(3).‎ ‎【解析】依题意,可以建立以为原点,分别以的方向为轴,轴,轴正方向的空间直角坐标系(如图),可得,.设,则.‎ ‎(1)依题意,是平面的法向量,又,可得,又因为直线平面,所以平面.‎ ‎(2)依题意,.‎ 设为平面的法向量,则即不妨令,‎ 可得.因此有.‎ 所以,直线与平面所成角的正弦值为.‎ ‎(3)设为平面的法向量,则即 不妨令,可得.‎ 由题意,有,解得 57‎ ‎.经检验,符合题意.‎ 所以,线段的长为.‎ ‎16.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.‎ 求证:(1)A1B1∥平面DEC1;‎ ‎(2)BE⊥C1E.‎ ‎【答案】(1)见解析;(2)见解析.‎ ‎【解析】(1)因为D,E分别为BC,AC的中点,‎ 所以ED∥AB.‎ 在直三棱柱ABC−A1B1C1中,AB∥A1B1,‎ 所以A1B1∥ED.‎ 又因为ED⊂平面DEC1,A1B1平面DEC1,‎ 所以A1B1∥平面DEC1.‎ ‎(2)因为AB=BC,E为AC的中点,所以BE⊥AC.‎ 因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.‎ 57‎ 又因为BE⊂平面ABC,所以CC1⊥BE.‎ 因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,‎ 所以BE⊥平面A1ACC1.‎ 因为C1E⊂平面A1ACC1,所以BE⊥C1E.‎ ‎17.【2019年高考浙江卷】(本小题满分15分)如图,已知三棱柱,平面平面,,分别是AC,A1B1的中点.‎ ‎(1)证明:;‎ ‎(2)求直线EF与平面A1BC所成角的余弦值.‎ ‎【答案】(1)见解析;(2).‎ ‎【解析】方法一:‎ ‎(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.‎ 又平面A1ACC1⊥平面ABC,A1E平面A1ACC1,‎ 平面A1ACC1∩平面ABC=AC,‎ 所以,A1E⊥平面ABC,则A1E⊥BC.‎ 又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.‎ 所以BC⊥平面A1EF.‎ 因此EF⊥BC.‎ 57‎ ‎(2)取BC中点G,连接EG,GF,则EGFA1是平行四边形.‎ 由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.‎ 由(1)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,‎ 所以EF在平面A1BC上的射影在直线A1G上.‎ 连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其补角).‎ 不妨设AC=4,则在Rt△A1EG中,A1E=2,EG=.‎ 由于O为A1G的中点,故,‎ 所以.‎ 因此,直线EF与平面A1BC所成角的余弦值是.‎ 方法二:‎ ‎(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.‎ 又平面A1ACC1⊥平面ABC,A1E平面A1ACC1,‎ 平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC.‎ 如图,以点E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系E–xyz.‎ 不妨设AC=4,则 57‎ A1(0,0,2),B(,1,0),,,C(0,2,0).‎ 因此,,.‎ 由得.‎ ‎(2)设直线EF与平面A1BC所成角为θ.‎ 由(1)可得.‎ 设平面A1BC的法向量为n,‎ 由,得,‎ 取n,故,‎ 因此,直线EF与平面A1BC所成的角的余弦值为.‎ ‎【2018年】‎ ‎4. (2018年天津卷)设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.‎ ‎(I)求椭圆的方程;‎ ‎(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.‎ ‎【答案】(Ⅰ);(Ⅱ)或 ‎【解析】(Ⅰ)设椭圆的焦距为2c,由已知有,‎ 又由a2=b2+c2,可得2a=3b.由已知可得,,,‎ 由,可得ab=6,从而a=3,b=2.‎ 所以,椭圆的方程为.‎ 57‎ ‎(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).‎ 由已知有y1>y2>0,故.‎ 又因为,而∠OAB=,故.‎ 由,可得5y1=9y2.‎ 由方程组消去x,可得.‎ 易知直线AB的方程为x+y–2=0,‎ 由方程组消去x,可得.‎ 由5y1=9y2,可得5(k+1)=,‎ 两边平方,整理得,‎ 解得,或.‎ 所以,k的值为或 ‎5. (2018年江苏卷)如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.‎ ‎(1)求椭圆C及圆O的方程;‎ ‎(2)设直线l与圆O相切于第一象限内的点P.‎ ‎①若直线l与椭圆C有且只有一个公共点,求点P的坐标;‎ ‎②直线l与椭圆C交于两点.若的面积为,求直线l的方程.‎ ‎【答案】(1)椭圆C的方程为;圆O的方程为 57‎ ‎(2)①点P的坐标为;②直线l的方程为 ‎【解析】(1)因为椭圆C的焦点为,‎ 可设椭圆C的方程为.又点在椭圆C上,‎ 所以,解得 因此,椭圆C的方程为.‎ 因为圆O的直径为,所以其方程为.‎ ‎(2)①设直线l与圆O相切于,则,‎ 所以直线l的方程为,即.‎ 由,消去y,得 ‎.(*)‎ 因为直线l与椭圆C有且只有一个公共点,‎ 所以.‎ 因为,所以.‎ 因此,点P的坐标为.‎ ‎②因为三角形OAB的面积为,所以,从而.‎ 设,‎ 由(*)得,‎ 所以 ‎.‎ 因为,‎ 57‎ 所以,即,‎ 解得舍去),则,因此P的坐标为.‎ 综上,直线l的方程为.‎ ‎6. (2018年全国I卷理数)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.‎ ‎(1)当与轴垂直时,求直线的方程;‎ ‎(2)设为坐标原点,证明:.‎ ‎【答案】(1) AM的方程为或.‎ ‎(2)证明见解析.‎ ‎【解析】‎ ‎(1)由已知得,l的方程为x=1.‎ 由已知可得,点A的坐标为或.‎ 所以AM的方程为或.‎ ‎(2)当l与x轴重合时,.‎ 当l与x轴垂直时,OM为AB的垂直平分线,所以.‎ 当l与x轴不重合也不垂直时,设l的方程为,,‎ 则,直线MA,MB的斜率之和为.‎ 由得 ‎.‎ 57‎ 将代入得 ‎.‎ 所以,.‎ 则.‎ 从而,故MA,MB的倾斜角互补,所以.‎ 综上,.‎ ‎7. (2018年全国Ⅲ卷理数)已知斜率为的直线与椭圆交于,两点,线段的中点为.‎ ‎(1)证明:;‎ ‎(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.‎ ‎【答案】(1)‎ ‎(2)或 ‎【解析】(1)设,则.‎ 两式相减,并由得 ‎.‎ 由题设知,于是 ‎.①‎ 由题设得,故.‎ ‎(2)由题意得,设,则 ‎.‎ 57‎ 由(1)及题设得.‎ 又点P在C上,所以,从而,.‎ 于是 ‎.‎ 同理.‎ 所以.‎ 故,即成等差数列.‎ 设该数列的公差为d,则 ‎.②‎ 将代入①得.‎ 所以l的方程为,代入C的方程,并整理得.‎ 故,代入②解得.‎ 所以该数列的公差为或.‎ 抛物线 ‎1. (2018年全国I卷理数)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=‎ A. 5 B. 6 C. 7 D. 8‎ ‎【答案】D 57‎ ‎【解析】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.‎ ‎2. (2018年全国Ⅲ卷理数)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.‎ ‎【答案】2‎ ‎【解析】设 则 所以 所以 取AB中点,分别过点A,B作准线的垂线,垂足分别为 因为,‎ ‎ ‎ 因为M’为AB中点,‎ 所以MM’平行于x轴 因为M(-1,1)‎ 所以,则即 故答案为2.‎ ‎3. (2018年浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.‎ 57‎ ‎(Ⅰ)设AB中点为M,证明:PM垂直于y轴;‎ ‎(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.‎ ‎【答案】(Ⅰ)见解析 ‎(Ⅱ)‎ ‎【解析】(Ⅰ)设,,.‎ 因为,的中点在抛物线上,所以,为方程 即的两个不同的实数根.‎ 所以.‎ 因此,垂直于轴.‎ ‎(Ⅱ)由(Ⅰ)可知 所以,.‎ 因此,的面积.‎ 因为,所以.‎ 因此,面积的取值范围是.‎ ‎4. (2018年北京卷)已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.‎ ‎(Ⅰ)求直线l的斜率的取值范围;‎ 57‎ ‎(Ⅱ)设O为原点,,,求证:为定值.‎ ‎【答案】(1) 取值范围是(-∞,-3)∪(-3,0)∪(0,1)‎ ‎(2)证明过程见解析 ‎【解析】(Ⅰ)因为抛物线y2=2px经过点P(1,2),‎ 所以4=2p,解得p=2,所以抛物线的方程为y2=4x.‎ 由题意可知直线l的斜率存在且不为0,‎ 设直线l的方程为y=kx+1(k≠0).‎ 由得.‎ 依题意,解得k<0或00).‎ 设A(x1,y1),B(x2,y2).‎ 由得.‎ ‎ ,故.‎ 所以.‎ 由题设知,解得k=–1(舍去),k=1.‎ 因此l的方程为y=x–1.‎ ‎(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为 ‎,即.‎ 设所求圆的圆心坐标为(x0,y0),则 解得或 因此所求圆的方程为 或.‎ ‎【2017年】‎ ‎12.【2017课标1,理20】已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.‎ ‎(1)求C的方程;‎ ‎(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.‎ 57‎ ‎【答案】(1).(2)见解析。‎ ‎【解析】(1)由于, 两点关于y轴对称,故由题设知C经过, 两点.‎ 又由知,C不经过点P1,所以点P2在C上.‎ 因此,解得.‎ 故C的方程为.‎ ‎(2)设直线P2A与直线P2B的斜率分别为k1,k2,‎ 如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t, ),(t, ).‎ 则,得,不符合题设.‎ 从而可设l: ().将代入得 由题设可知.‎ 设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.‎ 而 ‎.‎ 57‎ 由题设,故.‎ 即.‎ 解得.‎ 当且仅当时, ,欲使l: ,即,‎ 所以l过定点(2, )‎ ‎13.【2017课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足。‎ (1) 求点P的轨迹方程;‎ ‎(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线l过C的左焦点F。 ‎ ‎【答案】(1) 。(2)证明略。‎ ‎【解析】(1)设P(x,y),M(),则N(),‎ 由得.‎ 因为M()在C上,所以.‎ 因此点P的轨迹为.‎ 由题意知F(-1,0),设Q(-3,t),P(m,n),则 ‎,‎ ‎.‎ 由得-3m-+tn-=1,又由(1)知,故 ‎3+3m-tn=0.‎ 57‎ 所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.‎ ‎14.【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.‎ ‎(Ⅰ)求椭圆的方程;‎ ‎(Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.‎ ‎【答案】(I).‎ ‎(Ⅱ)的最大值为,取得最大值时直线的斜率为.‎ ‎【解析】‎ ‎(I)由题意知 , ,‎ 所以 ,‎ 因此 椭圆的方程为.‎ ‎(Ⅱ)设,‎ 57‎ 联立方程 得,‎ 由题意知,‎ 且,‎ 所以 .‎ 由题意可知圆的半径为 由题设知,‎ 所以 因此直线的方程为.‎ 联立方程 得,‎ 因此 .‎ 由题意可知 ,‎ 57‎ 而 ‎,‎ 令,‎ 则,‎ 因此 ,‎ 当且仅当,即时等号成立,此时,‎ 所以 ,‎ 因此,‎ 所以 最大值为.‎ 综上所述: 的最大值为,取得最大值时直线的斜率为.‎ ‎15.【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.‎ ‎(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;‎ ‎(Ⅱ)求证:A为线段BM的中点.‎ ‎【答案】(Ⅰ)方程为,抛物线C的焦点坐标为(,0),准线方程为.(Ⅱ)详见解析.‎ ‎【解析】‎ ‎(Ⅰ)由抛物线C: 过点P(1,1),得.‎ 57‎ 所以抛物线C的方程为.‎ 抛物线C的焦点坐标为(,0),准线方程为.‎ ‎(Ⅱ)由题意,设直线l的方程为(),l与抛物线C的交点为, .‎ 由,得.‎ 则, .‎ 因为点P的坐标为(1,1),所以直线OP的方程为,点A的坐标为.‎ 直线ON的方程为,点B的坐标为.‎ 因为 ‎,‎ 所以.‎ 故A为线段BM的中点.‎ ‎16.【2017天津,理19】设椭圆的左焦点为,右顶点为 57‎ ‎,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.‎ ‎(I)求椭圆的方程和抛物线的方程;‎ ‎(II)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.‎ ‎【答案】(Ⅰ), .(Ⅱ),或.‎ ‎【解析】‎ ‎(Ⅰ)解:设的坐标为.依题意, , , ,解得, , ,于是.所以,椭圆的方程为,抛物线的方程为.‎ ‎(Ⅱ)解:设直线的方程为,与直线的方程联立,可得点,故.将与联立,消去,整理得,解得,或.由点异于点,可得点.由,可得直线的方程为,令,解得,故.所以.又因为的面积为,故,整理得,解得,所以.‎ 所以,直线的方程为,或.‎ 57‎ ‎ 20.【2017江苏,17】 如图,在平面直角坐标系中,椭圆的左、右焦点分别为, ,离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作 直线的垂线,过点作直线的垂线.‎ ‎(1)求椭圆的标准方程;‎ ‎(2)若直线的交点在椭圆上,求点的坐标.‎ ‎【答案】(1)(2)‎ ‎【解析】(1)设椭圆的半焦距为c. ‎ 因为椭圆E的离心率为,两准线之间的距离为8,所以, , ‎ 解得,于是, ‎ 因此椭圆E的标准方程是.‎ ‎(2)由(1)知, , .‎ 设,因为点为第一象限的点,故.‎ 当时, 与相交于,与题设不符.‎ 当时,直线的斜率为,直线的斜率为.‎ 因为, ,所以直线的斜率为,直线的斜率为,‎ 57‎ 从而直线的方程: , ①‎ 直线的方程: . ②‎ 由①②,解得,所以.‎ 因为点在椭圆上,由对称性,得,即或.‎ 又在椭圆E上,故.‎ 由,解得; ,无解.‎ 因此点P的坐标为.‎ ‎【2016年】‎ ‎14.【2016高考山东理数】(本小题满分14分) 平面直角坐标系中,椭圆C: 的离心率是,抛物线E:的焦点F是C的一个顶点. (I)求椭圆C的方程;‎ ‎(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.‎ ‎(i)求证:点M在定直线上;‎ ‎(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.‎ 57‎ ‎【答案】(Ⅰ);(Ⅱ)(i)见解析;(ii)的最大值为,此时点的坐标为 ‎【解析】‎ ‎(Ⅰ)由题意知,可得:.‎ 因为抛物线的焦点为,所以,‎ 所以椭圆C的方程为.‎ ‎(Ⅱ)(Ⅰ)设,由可得,‎ 所以直线的斜率为,‎ 因此直线的方程为,即.‎ 设,联立方程 得,‎ 由,得且,‎ 57‎ 因此,‎ 将其代入得,‎ 因为,所以直线方程为.‎ 联立方程,得点的纵坐标为,‎ 即点在定直线上.‎ ‎(Ⅱ)由(Ⅰ)知直线方程为,‎ 令得,所以,‎ 又,‎ 所以,‎ ‎,‎ 所以,‎ 令,则,‎ 当,即时,取得最大值,此时,满足,‎ 所以点的坐标为,因此的最大值为,此时点的坐标为.‎ ‎15.【2016高考江苏卷】(本小题满分10分)‎ 57‎ 如图,在平面直角坐标系xOy中,已知直线,抛物线 ‎(1)若直线l过抛物线C的焦点,求抛物线C的方程;‎ ‎(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.‎ ‎①求证:线段PQ的中点坐标为;‎ ‎②求p的取值范围.‎ ‎【答案】(1)(2)①详见解析,②‎ ‎【解析】‎ 解:(1)抛物线的焦点为 由点在直线上,得,即 所以抛物线C的方程为 ‎(2)设,线段PQ的中点 因为点P和Q关于直线对称,所以直线垂直平分线段PQ,‎ 于是直线PQ的斜率为,则可设其方程为 ‎①由消去得 因为P 和Q是抛物线C上的相异两点,所以 从而,化简得.‎ 方程(*)的两根为,从而 因为在直线上,所以 57‎ 因此,线段PQ的中点坐标为 ‎②因为在直线上 所以,即 由①知,于是,所以 因此的取值范围为 ‎16.【2016高考天津理数】(本小题满分14分)‎ 设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.‎ ‎(Ⅰ)求椭圆的方程;‎ ‎(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.‎ ‎【答案】(Ⅰ)(Ⅱ)‎ ‎【解析】(Ⅰ)解:设,由,即,可得,又,所以,因此,所以椭圆的方程为.‎ ‎(Ⅱ)解:设直线的斜率为(),则直线的方程为.‎ 设,由方程组,消去,整理得.‎ 解得,或,由题意得,从而.‎ 57‎ 由(Ⅰ)知,,设,有,.‎ 由,得,所以,解得.‎ 因此直线的方程为.‎ 设,由方程组消去,解得.‎ 在中,,即,‎ 化简得,即,解得或.‎ 所以,直线的斜率的取值范围为.‎ ‎17.【2016高考新课标3理数】已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.‎ ‎(I)若在线段上,是的中点,证明;‎ ‎(II)若的面积是的面积的两倍,求中点的轨迹方程.‎ ‎【答案】(Ⅰ)见解析;(Ⅱ).‎ ‎【解析】由题设.设,则,且 ‎.‎ 记过两点的直线为,则的方程为. .....3分 ‎(Ⅰ)由于在线段上,故.‎ 记的斜率为,的斜率为,则,‎ 所以. ......5分 ‎(Ⅱ)设与轴的交点为,‎ 57‎ 则.‎ 由题设可得,所以(舍去),.‎ 设满足条件的的中点为.‎ 当与轴不垂直时,由可得.‎ 而,所以.‎ 当与轴垂直时,与重合,所以,所求轨迹方程为. ....12分 ‎18.【2016高考浙江理数】(本题满分15分)如图,设椭圆(a>1).‎ ‎(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);‎ ‎(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.‎ ‎【答案】(I);(II).‎ ‎【解析】‎ ‎(Ⅰ)设直线被椭圆截得的线段为,由得,‎ 故,.‎ 57‎ 因此.‎ ‎(Ⅱ)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足 ‎.‎ 记直线,的斜率分别为,,且,,.‎ 由(Ⅰ)知,,,‎ 故,‎ 所以.‎ 由于,,得,‎ 因此, ①‎ 因为①式关于,的方程有解的充要条件是,‎ 所以.‎ 因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,‎ 由得,所求离心率的取值范围为.‎ ‎19.【2016高考新课标2理数】已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,.‎ ‎(Ⅰ)当时,求的面积;‎ ‎(Ⅱ)当时,求的取值范围.‎ ‎【答案】(Ⅰ);(Ⅱ).‎ 57‎ ‎【解析】(Ⅰ)设,则由题意知,当时,的方程为,.‎ 由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.‎ 将代入得.解得或,所以.‎ 因此的面积.‎ ‎(Ⅱ)由题意,,.‎ 将直线的方程代入得.‎ 由得,故.‎ 由题设,直线的方程为,故同理可得,‎ 由得,即.‎ 当时上式不成立,‎ 因此.等价于,‎ 即.由此得,或,解得.‎ 因此的取值范围是.‎ ‎20.【2016年高考北京理数】(本小题14分)‎ 已知椭圆C: ()的离心率为 ,,,‎ 57‎ ‎,的面积为1.‎ ‎(1)求椭圆C的方程;‎ ‎(2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.‎ 求证:为定值.‎ ‎【答案】(1);(2)详见解析.‎ ‎【解析】‎ ‎(Ⅰ)由题意得解得.‎ 所以椭圆的方程为.‎ ‎(Ⅱ)由(Ⅰ)知,,‎ 设,则.‎ 当时,直线的方程为.‎ 令,得,从而.‎ 直线的方程为.‎ 令,得,从而.‎ 所以 57‎ ‎.‎ 当时,,‎ 所以.‎ 综上,为定值.‎ ‎21.【2016年高考四川理数】(本小题满分13分)‎ 已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线与椭圆E有且只有一个公共点T.‎ ‎(Ⅰ)求椭圆E的方程及点T的坐标;‎ ‎(Ⅱ)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数,使得,并求的值.‎ ‎【答案】(Ⅰ),点T坐标为(2,1);(Ⅱ).‎ ‎【解析】(I)由已知,,即,所以,则椭圆E的方程为.‎ 由方程组 得.①‎ 方程①的判别式为,由,得,‎ 此方程①的解为,‎ 所以椭圆E的方程为.‎ 点T坐标为(2,1).‎ ‎(II)由已知可设直线 的方程为,‎ 57‎ 有方程组 可得 所以P点坐标为( ),.‎ 设点A,B的坐标分别为 .‎ 由方程组 可得.②‎ 方程②的判别式为,由,解得.‎ 由②得.‎ 所以 ,‎ 同理,‎ 所以 ‎.‎ 故存在常数,使得.‎ ‎22. 【2016高考上海理数】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.‎ 双曲线的左、右焦点分别为,直线过且与双曲线交于 57‎ 两点。‎ ‎(1)若的倾斜角为,是等边三角形,求双曲线的渐近线方程;‎ ‎(2)设,若的斜率存在,且,求的斜率. ‎ ‎【答案】(1).(2).‎ ‎【解析】‎ ‎(1)设.‎ 由题意,,,,‎ 因为是等边三角形,所以,‎ 即,解得.‎ 故双曲线的渐近线方程为.‎ ‎(2)由已知,,.‎ 设,,直线.显然.‎ 由,得.‎ 因为与双曲线交于两点,所以,且.‎ 设的中点为.‎ 由即,知,故.‎ 而,,,‎ 所以,得,故的斜率为.‎ 57‎ ‎ ‎ 57‎
查看更多

相关文章

您可能关注的文档