2018届二轮复习(理)指导二 透视高考,解题模板示范,规范拿高分模板五课件(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018届二轮复习(理)指导二 透视高考,解题模板示范,规范拿高分模板五课件(全国通用)

【 例 5 】 ( 本小题满分 12 分 )(2016· 全国 Ⅰ 卷 ) 设圆 x 2 + y 2 + 2 x - 15 = 0 的圆心为 A ,直线 l 过点 B (1 , 0) 且与 x 轴不重合, l 交圆 A 于 C , D 两点,过 B 作 AC 的平行线交 AD 于点 E . (1) 证明 | EA | + | EB | 为定值,并写出点 E 的轨迹方程; (2) 设点 E 的轨迹为曲线 C 1 ,直线 l 交 C 1 于 M , N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P , Q 两点,求四边形 MPNQ 面积的取值范围 . 模板五 解析几何 (2) 解  当 l 与 x 轴不垂直时,设 l 的方程为 y = k ( x - 1)( k ≠ 0) , M ( x 1 , y 1 ) , N ( x 2 , y 2 ). 高考状元满分心得 1. 正确使用圆锥曲线的定义 :牢记圆锥曲线的定义,能根据圆锥曲线定义判断曲线类型,如本题第 (1) 问就涉及椭圆的定义 . 2. 注意分类讨论 :当用点斜式表示直线方程时,应分直线的斜率存在和不存在两种情况求解,易出现忽略斜率不存在的情况,导致扣分,如本题第 (2) 问中的得分 10 分,导致失 2 分 . 3. 写全得分关键 :在解析几何类解答题中,直线方程与圆锥曲线方程联立后得到的一元二次方程,根据一元二次方程得到的两根之和与两根之积、弦长、目标函数等一些关键式子和结果都是得分点,在解答时一定要写清楚 . 得 (4 k 2 + 1) x 2 + 8 kmx + 4( m 2 - 1) = 0 , 由 Δ = 0 ,可得 m 2 = 4 k 2 + 1.
查看更多

相关文章

您可能关注的文档