高考数学复习阶段滚动检测(一)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学复习阶段滚动检测(一)

‎ ‎ 阶段滚动检测(一)‎ ‎(第一、二章)‎ ‎(120分钟 150分)‎ 第I卷(选择题 共50分)‎ 一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1.已知集合A={0,a},B={b|b2-3b<0,b∈Z},A∩B≠Ø,则实数a的值为( )‎ ‎(A)1 (B)2 (C)1或2 (D)2或3‎ ‎2.已知a、b都是实数,那么“a2>b‎2”‎是“a>b”的( )‎ ‎(A)充分而不必要条件 (B)必要而不充分条件 ‎(C)充分必要条件 (D)既不充分也不必要条件 ‎3.(2012·安阳模拟)设集合A={x|-2<-a0},命题p:1∈A,命题q:2∈A.若p∨q为真命题,p∧q为假命题,则a的取值范围是( )‎ ‎(A)02 (B)0ax的解集为P,且[0,2]⊆P,则实数a的取值范围是( )‎ ‎(A)(-∞,e-1) (B)(e-1,+∞)‎ ‎(C)(-∞,e+1) (D)(e+1,+∞)‎ 第Ⅱ卷(非选择题 共100分)‎ 二、填空题(本大题共5小题,每小题4分,共20分.请把正确答案填在题中横线上)‎ ‎11.(2012·杭州模拟)函数的定义域为__________.‎ ‎12.若f(x)是幂函数,且满足则f()=__________.‎ ‎13.(2012•蚌埠模拟)定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f()=0,则不等式f()>0的解集是___________.‎ ‎14.拟定从甲地到乙地通话m分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数,若通话费为10.6元,则通话时间m∈__________.‎ ‎15.已知函数f(x)=lnx+2x,g(x)=a(x2+x),若f(x)≤g(x)恒成立,则实数a的取值范围是__________.‎ 三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)‎ ‎16.(13分)(2012·台州模拟)已知命题p:函数的定义域为R;命题q:方程有两个不相等的负数根,若p∨q是假命题,求实数a的取值范围.‎ ‎17.(13分)如图,设点P从原点沿曲线y=x2向点A(2,4)移动,记直线OP、曲线y=x2及直线x=2所围成的面积分别为S1,S2,若S1=S2,求点P的坐标.‎ ‎18.(13分)集合A是由具备下列性质的函数f(x)组成的:‎ ‎①函数f(x)的定义域是[0,+∞);‎ ‎②函数f(x)的值域是[-2,4);‎ ‎③函数f(x)在[0,+∞)上是增函数,试分别探究下列两小题:‎ ‎(1)判断函数是否属于集合A?并简要说明理由;‎ ‎(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<‎2f(x+1)是否对于任意的x≥0恒成立?请说明理由.‎ ‎19.(13分)如图所示:图1是定义在R上的二次函数y=f(x)的部分图象,图2是函数g(x)=loga(x+b)的部分图象.‎ ‎(1)分别求出函数f(x)和g(x)的解析式;‎ ‎(2)如果函数y=g(f(x))在区间[1,m)上单调递减,求m的取值范围.‎ ‎20.(14分)已知函数f(x)=ax2+2x+c(a、c∈N*)满足:‎ ‎①f(1)=5;②612 -2>1,充分性不成立.‎ 令a=1,b=-2,1>-2 12>(-2)2,必要性不成立,故选D.‎ ‎3.【解析】选C.p∨q为真命题,p∧q为假命题,则命题p,q一真一假.命题p为真时,a>1,又-2<-a,则a<2,‎ ‎∴10,∴a=-1.‎ 故f(-1)=--1+1=-.‎ ‎8.【解析】选B.由已知,x1、x2是f′(x)=3ax2+2bx+1的两个零点.‎ 又 ‎9.【解题指南】解答本题的突破口在于由f(x)的图象与x轴切于(1,0)点得到f′(1)=0及f(1)=0.‎ ‎【解析】选A.f′(x)=3x2-2px-q,‎ 由f′(1)=0,f(1)=0得,解得,‎ ‎∴f(x)=x3-2x2+x.由f′(x)=3x2-4x+1=0,得x=或x=1,进而求得当x=时,f(x)取极大值,当x=1时,f(x)取极小值0,故选A.‎ ‎10.【解题指南】转化为恒成立问题,利用导数求解.‎ ‎【解析】选A.因为ex-x>ax的解集为P,且[0,2]⊆P,所以对任意x∈[0,2],ex-x>ax恒成立,当x=0时,不等式恒成立,当00,当00,F(x)单调递增,F(x)≤0不可能恒成立,当a>0时,令F′(x)=0,得x=或x=- (舍去).‎ 当00,当x>时,F′(x)<0,故F(x)在(0,+∞)上有最大值F(),由题意F()≤0恒成立,即ln+-1≤0,令φ(a)=ln+-1,则φ(a)在(0,+∞)上单调递减,且φ(1)=0,故ln+-1≤0成立的充要条件是a≥1.‎ 答案:[1,+∞)‎ ‎16.【解析】由题意得p和q均是假命题,‎ 由p:x2-2ax+‎3a-2>0恒成立,Δ=‎4a2-4(‎3a-2)<0得1<a<2,p真:a≥2或a≤1,‎ 由q:当a=0时,不满足,‎ 当a≠0时,得0<a<1,q真:a≥1或a≤0,‎ 综上,由p假和q假得a≤0或a=1或a≥2.‎ ‎17.【解析】设直线OP的方程为y=kx,P点的坐标为(x,x2),‎ 则 即 解得kx2-x3=-2k-(x3-kx2),解得k=,即直线OP的方程为y=x,‎ 所以点P的坐标为(,).‎ ‎18.【解析】(1)函数f1(x)=-2不属于集合A.因为f1(x)的值域是[-2,‎ ‎+∞),所以函数f1(x)=-2不属于集合A.f2(x)=4-6·()x(x≥0)属于集合A,因为:①函数f2(x)的定义域是[0,+∞);②f2(x)的值域是[-2,4);‎ ‎③函数f2(x)在[0,+∞)上是增函数.‎ ‎(2)是.∵f(x)+f(x+2)-‎2f(x+1)=6·()x(-)<0,‎ ‎∴不等式f(x)+f(x+2)<‎2f(x+1)对任意的x≥0恒成立.‎ ‎19.【解题指南】解答本题关键是借助图形得到函数所过的点,求出对应的解析式,进而求解(2).‎ ‎【解析】(1)由题图1得,二次函数f(x)的顶点坐标为(1,2),‎ 故可设函数f(x)=k(x-1)2+2,‎ 又函数f(x)的图象过点(0,0),故k=-2,‎ 整理得f(x)=-2x2+4x.‎ 由题图2得,函数g(x)=loga(x+b)的图象过点(0,0)和(1,1),‎ 故有 ‎∴g(x)=log2(x+1)(x>-1).‎ ‎(2)由(1)得y=g(f(x))=log2(-2x2+4x+1)是由y=log2t和t=-2x2+4x+1复合而成的函数,而y=log2t在定义域上单调递增,要使函数y=g(f(x))在区间[1,m)上单调递减,必须t=-2x2+4x+1在区间[1,m)上单调递减,且有t>0恒成立.‎ 由t=0得x=,又t的图象的对称轴为x=1.‎ 所以满足条件的m的取值范围为11,即m>2时,‎ g(x)max=g()=-m,‎ 故只需-m≤1,解得m≥.‎ 又∵m>2,∴m≥.‎ 综上可知,m的取值范围是m≥.‎ 方法二:∵x∈[,],‎ ‎∴不等式f(x)-2mx≤1恒成立⇔2(1-m)≤-(x+)在[,]上恒成立.易知[-(x+)]min=-,‎ 故只需2(1-m)≤-即可.解得m≥.‎ ‎【方法技巧】二次函数的最值求解技巧:‎ 当二次函数的定义域不是R时,求函数的最值,要充分利用函数的图象,重点关注开口方向和对称轴与所给定区间的关系:若对称轴不在区间内,则该区间是函数的单调区间,最值在两个端点处,反之,则必有一个在顶点处取,即函数的最值不在端点处,就在顶点处.‎ ‎21.【解析】(1)F(x)=f(x)+2=x2+bsinx-2+2=x2+bsinx,‎ 依题意,对任意实数x,恒有F(x)-F(-x)=0.‎ ‎ 即x2+bsinx-(-x)2-bsin(-x)=0,‎ 即2bsinx=0,所以b=0,所以f(x)=x2-2.‎ ‎(2)∵g(x)=x2-2+2(x+1)+alnx,‎ ‎∴g(x)=x2+2x+alnx,‎ g′(x)=2x+2+.‎ ‎∵函数g(x)在(0,1)上单调递减,‎ ‎∴在区间(0,1)上,g′(x)=2x+2+=≤0恒成立,‎ ‎∴a≤-(2x2+2x)在(0,1)上恒成立,‎ 而-(2x2+2x)在(0,1)上单调递减,∴a≤-4.‎ ‎(3)∵h(x)=ln(1+x2)-f(x)-k ‎=ln(1+x2)- x2+1-k,‎ ‎∴h′(x)= -x.‎ 令h′(x)= -x=0,解得x=0,-1,1,‎ ‎∴当x<-1时,h′(x)>0,当-10,当x>1时,h′(x)<0,‎ ‎∴h(x)极大值=h(±1)=ln2+-k,‎ ‎∴h(x)极小值=h(0)=1-k,‎ 所以①当k>ln2+时,函数没有零点;‎ ‎②当1
查看更多

相关文章