2019-2020学年黑龙江省大庆市东风中学高一上学期期中考试数学试题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019-2020学年黑龙江省大庆市东风中学高一上学期期中考试数学试题

大庆市东风中学2019-2020学年度上学期高一期中考试 7. 已知函数 f (x) 的定义域为(1,0) ,则函数 f (2x 1) 的定义域为 ( ) 数学试题 A. (1, 1) 2 B. (1,1) C. (1, 0) D. ( 1 ,1) 2 考试时间120 分钟,150 分 I 选择题 8. 函数 f (x) lg x x 2 的零点所在的区间( ) A. (0,1) B. (1, 2) C. (2, 3) D. (3,10) 一、选择题(本题包括12 个小题,每小题5 分,共60 分;每小题只有一个选项符合题意。) 9.已知a 0.32,b log 0.3,c 20.3 ,则a,b,c 的大小关系是( ) 1.设集合M=1,2,4,6,8,N=1,2,3,5,6,7,则M N 中元素的个数为( ) A. b c a B. a b c C. b a c D. a c b A. 2 B. 3 C. 5 D. 7 x2 2, x 0  x   3a   4, x1 10. 已知 f (x)  ax , x 1 是R 上的增函数,则实数a 的取值范围是( ) 2.已知函数 f (x)   x   3, x 0 ,则 f ( f (1)) ( ) A. [3 ,) 2 B. (1, 3] C. 2 (0,1) D. (1, ) A. 4 B. 5 C. 6 D. 7 11. 函数 f (x) lg(x2 2x 3) 的单调递增区间是( ) 3.函数 f (x) 1 1x lg(1x) 的定义域是( ) A. (, 1) B. (,1) C. (1, ) D. (3, ) A.(1,1)(1, ) B. (1, ) C. (,1) D. (, ) 12. 若函数 f (x) | 2x 2 | b 有两个零点,则实数b 的取值范围是( ) 4. 幂函数y f (x) 的图象经过点(2, ) ,则 f (x) 的图象是( ) A. (0, 2) B. (0, ) C. (0, 2] D. (2, ) A. B. 二 、填空题(包括4 小题,共20 分) II 非选择题 C. D. 13. 函数 f (x) loga (x 2) 1 必过定点 . 14.方程2|x| a 有解,则a 的取值范围是 . 5. 函 数 f (x)   2   x 在 区 间 [1,1] 上的最小值是( ) 15.若二次函数 x1 x2  f (x) 有两个零点 . x1, x2 ,且 f (x) f (8 x) 对一切 xR 恒成立,则 2 A.  1 2 B. 1 2 C. 2 D. 2 16.函数 f (x) 是定义在R 上的奇函数,下列命题:① f (0) 0 ;②若 f (x) 在[0, ) 上有最小 值 6.对数函数的图象过点M(16,4) ,则此对数函数的解析式为( ) 1,则 f (x) 在(,0] 上有最大值 1;③若 f (x) 在[1,) 上为增函数,则 f (x) 在(,1] 上 A. y log4 x B. y log 1 x 4 C. y log 1 x 2 D. y log2 x 为减函数;④若x 0 时, f (x) x2 2x ,则x 0 时, f (x) x2 2x .其中正确命题的序号 是 . 1 3 (1)83 (0.5)3 ( )  6  ( 81 4 ; 2 二 、解答题(包括6小题,共70分) 20.(12分)已知函数 f (x) 3 a 为奇函数. 17.(10分)设集合M {x | 2x a 0},N {x | x2 2x 3 0} . (1)当a 1 时,求CRM ; (1)求 a 的值; 3x 1 (2)若N M ,求实数a 的取值范围. 18.(12分)求值: 2 3 ) (2)判断函数 f (x) 的单调性,并加以证明. 21.(12分) 已知二次函数 f (x) 满足: f (0) 3 , f (x 1) f (x) 2x . (1)求函数 f (x) 的解析式; (2)求 f (x) 在[t,t 1] 上的最小值g(t) . 16 (2)2log5 25 3log2 64 . 22.(12分)已知函数 f (x) 的定义域是R ,对任意实数x, y ,均有 f (x y) f (x) f (y) , 且x 0 时, f (x) 0 . 19.(12分)解下列方程、不等式. (1)求 f (0) 的值; 1(1)已知 ( ) 2 x2 2  ,求x 的值; (2)证明: f (x) 在R 上是增函数; (3)若 f (1) 2 .求不等式 f (a2 a 4) 4 的解集. (2)已知log 1 1 ,求a 的取值范围. a 2
查看更多

相关文章

您可能关注的文档