- 2021-06-30 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2017-2018学年四川省成都外国语学校高二上学期期末考试数学(理)试题 Word版
2017-2018学年四川省成都外国语学校高二上学期期末考试数学(理)试题 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.抛物线的准线方程是( ) A. B. C. D. 2.从某中学甲班随机抽取9名男同学测量他们的体重(单位:kg),获得体重数据如茎叶图所示,对这些数据,以下说法正确的是( ) A.中位数为62 B.中位数为65 C.众数为62 D.众数为64 3.命题“,”的否定是( ) A.不存在, B., C., D., 4.容量为100的样本,其数据分布在,将样本数据分为4组:,,,,得到频率分布直方图如图所示.则下列说法不正确的是( ) A.样本数据分布在的频率为 B.样本数据分布在的频数为40 C.样本数据分布在的频数为40 D.估计总体数据大约有分布在 5.“”是“为椭圆方程”是( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 6.已知函数,若在上随机取一个实数,则的概率为( ) A. B. C. D. 7.在平面内,已知两定点,间的距离为2,动点满足,若,则的面积为( ) A. B. C. D. 8.在2017年3月15日,某物价部门对本市5家商场某商品一天的销售额及其价格进行调查,5家商场的价格与销售额之间的一组数据如下表所示: 价格元 (单位:元) 8 销售额 (单位:千元) 12 10 8 6 4 由散点图可知,销售额与价格之间有较好的线性相关关系,且回归直线方程是,则( ) A. B. C.40 D. 9.已知双曲线的左焦点为,右顶点为,过点且垂直于轴的直线与双曲线相交于不同的两点,,若为锐角三角形,则双曲线的离心率的取值范围为( ) A. B. C. D. 10.阅读如图所示的程序,若执行循环体的次数为5,则程序中的取值范围是( ) A. B. C. D. 11.已知椭圆的右焦点为,点在椭圆上.若点满足且,则的最小值为( ) A.3 B. C. D.1 12.设抛物线的焦点为,过点的直线与抛物线相交于不同的两点,,与抛物线的准线相交于点,且,记与的面积分别为,,则( ) A. B. C. D. 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若直线为双曲线的一条渐近线,则____________. 14.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数为____________. 15.如图所示的程序框图的算法思路源于宋元时期数学名著《算法启蒙》中的“松竹并生”问题.若输入的,的值分别为,3,则输出的的值为____________. 16.若经过坐标原点的直线与圆相交于不同的两点,,则弦的中点的轨迹方程为____________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球. (1)从甲袋中任取两球,求取出的两球颜色不相同的概率; (2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率. 18.已知命题:若关于的方程无实数根,则;命题:若关于的方程有两个不相等的正实数根,则. (1)写出命题的否命题,并判断命题的真假; (2)判断命题“且”的真假,并说明理由. 19.阅读如图所示的程序框图,解答下列问题: (1)求输入的的值分别为,2时,输出的的值; (2)根据程序框图,写出函数的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围. 20.已知以坐标原点为圆心的圆与抛物线相交于不同的两点,,与抛物线的准线相交于不同的两点,,且. (1)求抛物线的方程; (2)若不经过坐标原点的直线与抛物线相交于不同的两点,,且满足.证明直线过定点,并求出点的坐标. 21.一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表: 网购金额 (单位:千元) 频数 频率 3 9 15 18 合计 60 若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为. (1) 确定,,,的值,并补全频率分布直方图; (1) 试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”. 22.已知动点到定点的距离和它到直线的距离的比值为常数,记动点的轨迹为曲线. (1)求曲线的方程; (2)若直线与曲线相交于不同的两点,,直线与曲线相交于不同的两点,且,求以,,,为顶点的凸四边形的面积的最大值. 2017~2018学年度上期期末高二年级调研考试 数学(理科)参考答案 一、选择题 1-5:ACDDB 6-10:DBCAD 11、12:CA 二、填空题 13.1 14.150 15.3 16. 三、解答题 17.解:(1)将甲袋中的1只黑球,3只红球分别记为:;,,. 从甲袋中任取两球,所有可能的结果有,,,,,共6种. 其中两球颜色不相同的结果有,,共3种. 记“从甲袋中任取两球,取出的两球颜色不相同”为事件,则 . ∴从甲袋中任取两球,取出的两球颜色不相同的概率为. (2)将甲袋中的1只黑球,3只红球分别记为;,,.,将乙袋中的2只黑球,1只红球分别记为:,;. 从甲,乙两袋中各取一球的所有可能结果有,,,,,,,,,,,共12种. 其中两球颜色相同的结果有:,,,,共5种. 记“从甲,乙两袋中各取一球,取出的两球颜色相同”为事件. 则. ∴从甲,乙两袋中各取一球,取出的两球颜色相同的概率为. 18.解:(1)命题的否命题:若关于的方程有实数根,则 ,或. ∵关于的方程有实根,∴. ∵, 化简,得,解得,或. ∴命题为真命题. (2)对于命题:若关于的方程无实数根. 则. 化简,得,解得. ∴命题为真命题. 对于命题:关于的方程有两个不相等的正实数根. 有,解得. ∴命题为真命题, ∴命题“且”为真命题. 19.解:(1)当输入的的值为时,输出的. 当输入的的值为2时,输出的. (2)根据程序框图,可得, 当时,,此时单调递增,且; 当时,; 当时,在上单调递减,在上单调递增,且. 结合图象,知当关于的方程有三个不同的实数解时,实数的取值范围为. 20.解:(1)由已知,则,两点所在的直线方程为. 则,故. ∴抛物线的方程为. (2)由题意,直线不与轴垂直,设直线的方程为,,, 联立,消去,得. ∴,,, ∵,∴, 又,,∴. ∴,解得或. 而,∴(此时) ∴直线的方程为, 故直线过定点. 21.解:(1)由题意,得, 化简,得, 解得,. ∴,. 补全的频率分布直方图如图所示: (2)设这60名网友的网购金额的平均数为. 则(千元) 又∵,. ∴这60名网友的网购金额的中位数为(千元), ∵平均数,中位数, ∴根据估算判断,该网店当日不能被评为“皇冠店”. 22.解:(1)设,动点到直线的距离为, 根据题意,动点的轨迹为集合. 由此,得. 化简,得. ∴曲线的方程为. (2)设,, 联立,消去,得, ∴ ∴, 同理可得. ∵, ∴, 即, 又,∴, 由题意,以,,,为顶点的凸四边形为平行四边形, 设两平行线,间的距离为,则, ∵,∴, 则, ∵(当且仅当时取等号,此时满足), ∴四边形的面积的最大值为4. 查看更多