- 2021-06-30 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
天津市西青区2019-2020学年高二上学期期末考试数学
数学试卷 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分150分. 考试时间120分钟. 第I卷1至2页,第II卷3至6页. 注意事项:答卷前务必将自己的姓名、准考号填写在答题卡上,答卷时,考生务必把答案涂写在答题卡各题目指定区域内相应的位置,答在试卷上的无效. 祝各位考生考试顺利! 第Ⅰ卷 一、选择题:本大题共8小题,每小题5分,共40分. 1. 设复数满足,则= A. B. C. D. 2. “”是“”的 A.充分必要条件 B.必要而不充分条件 C. 充分而不必要条件 D.既不充分也不必要条件 3. 已知空间向量,且,则 A. B. C. D. 4. 设等差数列的前n项之和为,已知,则 A. B. C. D. 5. 抛物线的焦点坐标是 A. B. C. D. 6. 数列的前项和为,若,则= A. B. C. D. 7. 设.若是与的等比中项,则的最小值为 A. B. C. D. 8. 已知双曲线,双曲线的左、右焦点分别为、,双曲线、的离心率相同.若是双曲线一条渐近线上的点,且 (为原点),若,则双曲线的方程为 A. B. C. D. 第Ⅱ卷 注意事项:1.将答案写在答题卡上 2.本卷共12小题,共110分 二.填空题:本大题共6小题,每小题5分,共30分. 9. 命题:. 则为 . 10. 已知双曲线的对称轴为坐标轴,一条渐近线为,则双曲线的离心率为 _. 11. 已知等比数列中,,则_________. 12. 以下五个命题中: ①若,则的取值范围是; ②不等式,对一切x恒成立,则实数的取值范围为; ③若椭圆的两焦点为、,且弦过点,则的周长为16; ④若常数,,,成等差数列,则,,成等比数列; ⑤数列的前项和为=+2-1,则这个数列一定是等差数列. 所有正确命题的序号是 . 13.《张丘建算经》卷上第题中 “女子织布”问题:某女子善于织布,一天比一天织得快, 而且每天增加的数量相同.已知第一天织布尺,天共织布尺,则该女子织布每天增加 尺.[ 14. 已知椭圆与双曲线有相同的焦点和,若是、的等比中项,是与的等差中项,则椭圆的离心率是 . 三、解答题:本大题共6个小题,共80分. 解答应写出文字说明、演算步骤或推理过程. 15.(本小题满分13分) 已知递增的等比数列满足且是的等差中项. (I)求数列的通项公式; (II)若是数列的前项和,求的值. . 16.(本小题满分13分) 求关于的不等式:的解集. 17.(本小题满分13分) 已知抛物线的顶点在原点,对称轴为坐标轴,它与双曲线: 交于点,抛物线的准线过双曲线的左焦点. (I)求抛物线与双曲线的标准方程; (II)若斜率为的直线过点且与抛物线只有一个公共点,求直线的方程. 18.(本小题满分13分) 在如图所示的几何体中,四边形是菱形,是矩形,平面平面.,, 且点为的中点. (I) 求证:∥平面; (II) 求与平面所成角的正弦值; (III) 在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由. 19.(本小题满分14分) 已知数列的前项和为,,,数列中,,满足 . (I) 求出,的通项公式; (II)设,数列的前项和为,求使得时,对所有的 恒成立的最大正整数值. 20.(本小题满分14分) 已知椭圆的一个焦点是,且离心率为. (I) 求椭圆的方程; (Ⅱ)设经过点的直线交椭圆于两点,线段的垂直平分线交轴于点,求的取值范围. 数学试卷答案 一、选择题:本大题共8小题,每小题5分,共40分. 题号 1 2 3 4 5 6 7 8 答案 D B C B A C A D 二.填空题:本大题共6小题,每小题5分,共30分. 9. 10. 或 (只对一个给3分) 11. 12.④ 13. 14. 三、解答题: 15.解: (Ⅰ) (1)……………………………………….1分 又是的等差中项 ……………………………………………………2分 即:(2) (1)(2)得 解得:或者………………………………………………………..5分 等比数列递增,所以………………………………………6分 由得…………………………………………………………7分 数列{an}的通项公式为…………………………………8分 =…………………………………………9分 (Ⅱ)==……………………………………..10分 …………………………………………………..11分 = =230 ……………………………… 13分 16.解:当时,不等式的解为……………………………2分 当时,分解因式……………………….3分 的根为……………………………..4分 当时,不等式的解为或;……………………………6分 当时,1<,不等式的解为1<x<;……………………………8分 当时,<1,不等式的解为<x<1;………………………………10分 当时,原不等式为 不等式的解为 …………………12分 。 综上:当时,不等式的解集为; 当时,不等式的解集为; 当时,不等式的解集为; 当时,不等式的解集为; 当时,不等式的解集为 …………………………………….13分 17. 解法1:抛物线的准线过双曲线的左焦点. 抛物线的焦点在轴的正半轴 设抛物线的方程为:………………2分 点在抛物线上 ……………………………………………….3分 抛物线方程为: …………………………4分 抛物线的准线为 抛物线的准线过双曲线的左焦点 双曲线的焦点为,………………………….5分 …………………………………………….6分 = 解得:……………………………………………………..7分 ……………………………..8分 双曲线方程为:……………………………………9分 解法2:抛物线的准线过双曲线的左焦点. 抛物线的焦点在轴的正半轴 设抛物线的方程为:………………2分 点在抛物线上 ………………………………………………3分 抛物线方程为: …………………………4分 抛物线的准线为 抛物线的准线过双曲线的左焦点 双曲线的焦点为,………………………….5分 由…………………………………6分 或(舍)…………………………….7分 …………………………….8分 双曲线方程为:……………………………………9分 (Ⅱ) 设直线方程为: 则过点的直线方程为,……………………10分 由方程组消去得. 时,解得即直线与抛物线的对称轴平行, 只有一个公共点;………………………………………………………..11分 当时,直线与抛物线只有一个公共点,则, , 直线方程为.……………………………………..12分 综上所述,所求直线方程为,或.……………………..13分 18. (Ⅰ)设与交于,连接 由已知可得四边形是平行四边形,所以是的中点. 因为是的中点,所以∥………1分 又平面, ………2分 平面,………… 3分 所以∥平面 (Ⅱ)是矩形,平面平面,平面平面 平面………4分 如图建立空间直角坐标系, 则,,,,,……..5分(错一个就不给分) 设平面的法向量为 ………6分 ………7分 ………8分 与平面所成角的正弦值………9分 (Ⅲ)设,, 设平面的法向量为 则, 令, ………10分 又平面的法向量 ………11分 解得, ………12分 在线段上不存在点,使二面角的大小为.………13分 19.解: (Ⅰ)当时,得, ……1分 当时,由 两式相减得 即………………………3分 于是数列{an}是首项为1,公比为2的等比数列, 即 ∴数列{an}的通项公式为……………………………4分 由累积法得: ……………………………6分 ………………………………………7分 (Ⅱ) Tn=1+2×2+3×22+…+n×2n-1,① 2Tn= 1×2+2×22+3×23+…+n×2n.② ①-②得 -Tn=1+2+22+…+2n-1-n·2n …………..8分 =2n-1-n·2n……….10分 Tn=1+(n-1)·2n………………………...11分 又因为, 恒成立 所以Tn=1+(n-1)·2n……………………………………………….12分 时,对所有的恒成立 化简得:,解得 的最大整数值为………………………………………………14分 20.(Ⅰ)解:设椭圆的半焦距是.依题意,得 . ……………1分 因为椭圆的离心率为, 所以 ,…………………………2分 . ………………3分 故椭圆的方程为 . ………………4分 (Ⅱ)解:当轴时,显然. ………………5分 当与轴不垂直时,可设直线的方程为. 由 消去整理得 . …………7分 设,线段的中点为. 则 . …………8分 所以 ,. 线段的垂直平分线方程为. 在上述方程中令,得. …………10分 当时,; 当时,. 所以,或. ……………13分 综上,的取值范围是. ……………14分查看更多