- 2021-06-30 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教版高三数学总复习课时作业65
课时作业65 用样本估计总体 一、选择题 1.容量为20的样本数据,分组后的频数如下表: 分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) 频数 2 3 4 5 4 2 则样本数据落在区间[10,40)的频率为( ) A.0.35 B.0.45 C.0.55 D.0.65 解析:求得该频数为2+3+4=9,样本容量是20,所以频率为=0.45. 答案:B 2.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( ) A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53 解析: 从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即=46,众数为45,极差为68-12=56. 答案:A 3.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( ) A.11 B.11.5 C.12 D.12.5 解析:设样本重量的中位数为10+x,5×0.06+0.1x=0.5可得x=2,故估计样本重量的中位数为12. 答案:C 4.将甲、乙两个篮球队10场比赛的得分数据整理成如上所示的茎叶图,由图可知( ) A.甲、乙两队得分的中位数相等 B.甲、乙两队得分的平均数相等 C.甲、乙两队得分的极差相等 D.甲、乙两队得分的方差相等 解析:甲队中位数是37,乙队中位数是37.5,甲队平均得分甲==38.同上乙=38.故甲、乙两队得分的平均数相等. 答案:B 5.(2014·陕西卷)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A.,s2+1002 B.+100,s2+1002 C.,s2 D.+100,s2 解析:由题意,得=, s2=[(x1-)2+(x2-)2+…+(x10-)2]. 因为下月起每位员工的月工资增加100元, 所以下月工资的均值为 ==+100 下月工资的方差为[(x1+100--100)2+(x2+100--100)2+…+(x10+100--100)2]=[(x1-)2+(x2-)2+…+(x10-)2]=s2,故选D. 答案:D 6.等差数列x1,x2,x3,…,x9的公差为1,若以上述数据x1,x2,x3,…,x9为样本,则此样本的方差为( ) A. B. C.60 D.30 解析:公差为1的等差数列为x1,x2,x3,…,x9,则=(x1+x2+…+x9)==x5.方差s2= =[(-4)2+(-3)2+(-2)2+(-1)2+0+12+22+32+42]==. 答案:A 二、填空题 7.若一组样本数据2,3,7,8,a的平均数为5,则该组数据的方差s2=________. 解析:由=5得a=5.所以s2=[(2-5)2+(3-5)2+(7-5)2+(8-5)2+(5-5)2]=. 答案: 8.某厂对一批产品进行抽样检测.下图是抽检产品净重(单位:克)数据的频率分布直方图,样本数据分组为[76,78),[78,80),…,[84,86].若这批产品有120个,估计其中净重大于或等于78克且小于84克的产品的个数是________. 解析:[78,84)克的产品的频率为2×0.100+2×0.150+2×0.125=0.75,故[78,84)克的产品的个数是120×0.75=90. 答案:90 9.已知x是1,2,3,x,5,6,7这七个数据的中位数,且1,3,x,-y 这四个数据的平均数为1,则+y的最小值为________. 解析:由已知得3≤x≤5,=1,∴y=x, ∴+y=+x,又函数y=+x在[3,5]上单调递增, ∴当x=3时取最小值. 答案: 三、解答题 10.(2014·北京卷)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: 组号 分组 频数 1 [0,2) 6 2 [2,4) 8 3 [4,6) 17 4 [6,8) 22 5 [8,10) 25 6 [10,12) 12 7 [12,14) 6 8 [14,16) 2 9 [16,18) 2 合计 100 (1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a,b的值; (3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论) 解:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1-=0.9. 从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9. (2)课外阅读时间落在组[4,6)的有17人,频率为0.17,所以a===0.085. 课外阅读时间落在组[8,10)的有25人,频率为0.25,所以b===0.125. (3)样本中的100名学生课外阅读时间的平均数在第4组. 11.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下: 服用A药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好? 解:(1)设A药观测数据的平均数为,B药观测数据的平均数为. 由观测结果可得 =×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3, =× (0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6. 由以上计算结果可得>,因此可看出A药的疗效更好. (2)由观测结果可绘制如下茎叶图: 从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎2,3上,而B药疗效的试验结果有的叶集中在茎0,1上,由此可看出A药的疗效更好. 1.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( ) A.30% B.10% C.3% D.不能确定 解析:由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%. 答案:C 2.已知数据x1,x2,x3,…,xn分别是江西省普通职工n(n≥3,n∈N*)个人的年收入,设这n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入xn+1,则对于这n+1个数据,下列说法正确的是( ) A.年收入平均数大大增大,中位数一定变大,方差可能不变 B.年收入平均数大大增大,中位数可能不变,方差变大 C.年收入平均数大大增大,中位数可能不变,方差也不变 D.年收入平均数可能不变,中位数可能不变,方差可能不变 解析:由于世界首富的年收入xn+1较大,故平均数一定会增大,差距会拉大,因此方差也会变大. 答案:B 3.(2014·江苏卷)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm. 解析:由题意在抽测的60株树木中,底部周长小于100 cm的株数为(0.015+0.025)×10×60=24. 答案:24 4.(2014·广东卷)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如下: 分组 频数 频率 [25,30] 3 0.12 (30,35] 5 0.20 (35,40] 8 0.32 (40,45] n1 f1 (45,50] n2 f2 (1)确定样本频率分布表中n1,n2,f1和f2的值; (2)根据上述频率分布表,画出样本频率分布直方图; (3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率. 解:(1)由题中数据可知n1=7,n2=2,f1==0.28,f2==0.08; (2) (3)设任取4人,至少有1人的日加工零件数落在区间(30,35]为事件A,则由直方图可得:P(A)=1-P()=1-0.84=0.590 4.查看更多