- 2021-06-24 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高中数学必修4:1_2_1任意角的三角函数(教、学案)
1. 2.1任意角的三角函数 【教学目标】 (1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号); (2)理解任意角的三角函数不同的定义方法; (3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来; (4)掌握并能初步运用公式一; (5)树立映射观点,正确理解三角函数是以实数为自变量的函数. 【教学重难点】 重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一). 难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解. 【教学过程】 y P(a,b) r O M 一、【创设情境】 提问:锐角O的正弦、余弦、正切怎样表示? 借助右图直角三角形,复习回顾. 引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。 数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗? 如图,设锐角的顶点与原点重合,始边与轴的正半轴重合,那 a的终边 P(x,y) O x y 么它的终边在第一象限.在的终边上任取一点,它与原点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则; ; . 思考:对于确定的角,这三个比值是否会随点在的终边上的位置的改变而改变呢? 显然,我们可以将点取在使线段的长的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数: ; ; . 思考:上述锐角的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数. 二、【探究新知】 1.探究:结合上述锐角的三角函数值的求法,我们应如何求解任意角的三角函数值呢? 显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点为圆心,以单位长度为半径的圆. 2.思考:如何利用单位圆定义任意角的三角函数的定义? 如图,设是一个任意角,它的终边与单位圆交于点,那么: (1)叫做的正弦(sine),记做,即; (2)叫做的余弦(cossine),记做,即; (3)叫做的正切(tangent),记做,即. 注意:当α是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点,从而就必然能够最终算出三角函数值. 3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢? 前面我们已经知道,三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,, .所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数. 4.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中: 三角函数 定义域 第一象限 第二象限 第三象限 第四象限 角度制 弧度制 5.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 终边相同的角的同一三角函数值相等.即有公式一: (其中) 6.三角函数线 设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点 ,过作轴的垂线,垂足为;过点作单位圆的切线,它与角 的终边或其反向延长线交与点. (Ⅰ) (Ⅱ) (Ⅳ) (Ⅲ) 由四个图看出: 当角的终边不在坐标轴上时,有向线段,于是有 我们就分别称有向线段为正弦线、余弦线、正切线。 我们把这三条与单位圆有关的有向线段,分别叫做角的正弦线、余弦线、正切线,统称为三角函数线. 7.例题讲解 例1.已知角α的终边经过点,求α的三个函数制值。 解: 变式训练1:已知角的终边过点,求角的正弦、余弦和正切值. 解:,,. 例2.求下列各角的三个三角函数值: (1); (2); (3). 解:(1)sin0=0 cos0=1 tan0=0 (2) (3) 变式训练2:求的正弦、余弦和正切值. 例3.已知角α的终边过点,求α的三个三角函数值. 解析:计算点到原点的距离时应该讨论a的正负. 变式训练3: 求函数的值域. 解析:分四个象限讨论. 答案:{2,-2,0} 例4..利用三角函数线比较下列各组数的大小: 1.与 2.tan与tan 三、【学习小结】 (1)本章的三角函数定义与初中时的定义有何异同? (2)你能准确判断三角函数值在各象限内的符号吗? (3)请写出各三角函数的定义域; (4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗? (5)三角函数线的做法. 四、【作业布置】 作业:习题1.2 A组第1,2题. 五、【板书设计】 1.2.1任意角的三角函数 (一)复习引入 (二) 概念形成 1.三角函数定义 2.三角函数线 (三)例题讲解 小结: 1.21任意角的三角函数 课前预习学案 一、预习目标: 1.了解三角函数的两种定义方法; 2.知道三角函数线的基本做法. 二、预习内容: 根据课本本节内容,完成预习目标,完成以下各个概念的填空. 三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容 课内探究学案 一、学习目标 (1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号); (2)理解任意角的三角函数不同的定义方法; (3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来; (4)掌握并能初步运用公式一; (5)树立映射观点,正确理解三角函数是以实数为自变量的函数. 二、重点、难点 重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一). 难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解. 三、学习过程 (一)复习: 1、初中锐角的三角函数______________________________________________________ 2、在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为_______________________________________________ (二)新课: 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么 (1)比值_______叫做α的正弦,记作_______,即________ (2)比值_______叫做α的余弦,记作_______,即_________ (3)比值_______叫做α的正切,记作_______,即_________; 2.三角函数的定义域、值域 函 数 定 义 域 值 域 3.三角函数的符号 由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知: ①正弦值对于第一、二象限为_____(),对于第三、四象限为____(); ②余弦值对于第一、四象限为_____(),对于第二、三象限为____(); ③正切值对于第一、三象限为_______(同号),对于第二、四象限为______(异号). 4.诱导公式 由三角函数的定义,就可知道:__________________________ 即有:_________________________ _________________________ _________________________ 5.当角的终边上一点的坐标满足_______________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。 设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点. (Ⅰ) (Ⅱ) (Ⅳ) (Ⅲ) 由四个图看出: 当角的终边不在坐标轴上时,有向线段,于是有 ,_______ ,________ ._________ 我们就分别称有向线段为正弦线、余弦线、正切线。 (三)例题 例1.已知角α的终边经过点,求α的三个函数制值。 变式训练1:已知角的终边过点,求角的正弦、余弦和正切值. 例2.求下列各角的三个三角函数值: (1); (2); (3). 变式训练2:求的正弦、余弦和正切值. 例3.已知角α的终边过点,求α的三个三角函数值。 变式训练3: 求函数的值域 例4..利用三角函数线比较下列各组数的大小: 1. 与 2. tan与tan (四)、小结 课后练习与提高 一、选择题 1. 是第二象限角,P(,)为其终边上一点,且,则的值为( ) A. B. C. D. 2. 是第二象限角,且,则是( ) A. 第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角 3、如果那么下列各式中正确的是( ) A. B. C. D. 二、填空题 4. 已知的终边过(9,)且,,则的取值范围是 。 5. 函数的定义域为 。 6. 的值为 (正数,负数,0,不存在) 三、解答题 7.已知角α的终边上一点P的坐标为()(),且,求 查看更多