- 2021-06-24 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教A数学必修一函数的概念一
课题:函数的概念(一) 课 型:新授课 教学目标: (1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解构成函数的三要素; (3)能够正确使用“区间”的符号表示某些集合。 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。 教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。 教学过程: 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的概念: 思考1:(课本P15)给出三个实例: A.一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。 B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。(见课本P15图) C.国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。“八五”计划以来我们城镇居民的恩格尔系数如下表。(见课本P16表) 讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系? 三个实例有什么共同点? 归纳:三个实例变量之间的关系都可以描述为:对于数集A中的每一个x,按照某种对应关系f,在数集B中都与唯一确定的y和它对应,记作: 函数的定义: 设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作: 其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range)。显然,值域是集合B的子集。 (1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R; (2)二次函数 (a≠0)的定义域是R,值域是B;当a>0时,值域;当a﹤0时,值域。 (3)反比例函数的定义域是,值域是。 (二)区间及写法: 设a、b是两个实数,且a5}、{x|x≤-1}、{x|x<0} (学生做,教师订正) (三)例题讲解: 例1.已知函数,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数的值域 例2.已知函数, (1) 求的值; (2) 当a>0时,求的值。 (四)课堂练习: 1. 用区间表示下列集合: 2. 已知函数f(x)=3x+5x-2,求f(3)、f(-)、f(a)、f(a+1)的值; 3. 课本P19练习2。 归纳小结: 函数模型应用思想;函数概念;二次函数的值域;区间表示 作业布置: 习题1.2A组,第4,5,6; 课后记:查看更多