- 2021-06-24 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021高考数学一轮复习专练30等差数列及其前n项和含解析理新人教版
专练30 等差数列及其前n项和 命题范围:等差数列的概念和性质、等差数列的通项公式及前n项和公式 [基础强化] 一、选择题 1.[2020·广东测试]记Sn为等差数列{an}的前n项和.若S5=2S4,a2+a4=8,则a5=( ) A.6 B.7 C.8 D.10 2.[2020·四川成都测试]已知等差数列{an}的前n项和为Sn,且a4=,S10=15,则a7=( ) A. B.1 C. D.2 3.设Sn为等差数列{an}的前n项和,若3S3=S2+S4,a1=2,则a5=( ) A.-12 B.-10 C.10 D.12 4.记Sn为等差数列{an}的前n项和,若a4+a5=24,S6=48,则{an}的公差为( ) A.1 B.2 C.4 D.8 5.[2020·湖南怀化月考]等差数列{an}的前n项和为Sn,且a3+a7=22,S11=143.若Sn>195,则n的最小值为( ) A.13 B.14 C.15 D.16 6.[2020·皖南八校联考]已知等差数列{an}中,a2=1,前5项和S5=-15,则数列{an}的公差为( ) A.-3 B.- C.-2 D.-4 7.[2020·江西师大附中高三测试]已知数列{an}的前n项和Sn=an2+bn(a,b∈R)且a2=3,a6=11,则S7=( ) A.13 B.49 C.35 D.63 8.[2020·全国卷Ⅱ]北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( ) A.3 699块 B.3 474块 C.3 402块 D.3 339块 9.[2019·全国卷Ⅰ]记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则( ) A.an=2n-5 B.an=3n-10 C.Sn=2n2-8n D.Sn=n2-2n 二、填空题 10.[2019·全国卷Ⅲ]记Sn为等差数列{an}的前n项和.若a1≠0,a2=3a1,则=________. 11.记等差数列{an}的前n项和为Sn,若a3=0,a6+a7=14,则S7=________. 12.[2020·广东惠州一调]等差数列{an}的前n项和为Sn,若a4+a5=25,S6=57,则{an}的公差为______. [能力提升] 13.[2020·山东泰安测试]我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(guǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪是连续十二个节气,其日影子长依次成等差数列,经记录测算,夏至、处暑、霜降三个节气日影子长之和为16.5尺,这十二个节气的所有日影子长之和为84尺,则夏至的日影子长为________尺. 14.已知数列{an}为等差数列,数列{bn}为等比数列,且满足a2016+a2017=π,b20b21=4,则tan=( ) A. B. C.1 D.-1 15.若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=________时,{an}的前n项和最大. 16.在等差数列{an}中,a1=7,公差为d,前n项和为Sn,当且仅当n=8时Sn取最大值,则d的取值范围是________. 专练30 等差数列及其前n项和 1.D 设等差数列{an}的公差为d.∵S5=2S4,a2+a4=8, ∴ 整理得解得∴a5=a1+4d=-2+12=10.故选D. 2.A 设等差数列{an}的首项为a1,则由等差数列{an}的前n项和为Sn及S10=15,得=15,所以a1+a10=3.由等差数列的性质,得a1+a10=a4+a7,所以a4+a7=3.又因为a4=,所以a7=.故选A. 3.B 设等差数列{an}的公差为d, 则3=2a1+d+4a1+d, 得d=-a1,又a1=2, ∴d=-3,∴a5=a1+4d=-10. 4.C ∵S6==48,∴a1+a6=16, 又a4+a5=24, ∴(a4+a5)-(a1+a6)=8, ∴3d-d=8,d=4. 5.B 设等差数列{an}的公差为d.因为a3+a7=22,所以2a5=22,即a5=11. 又因为S11===143,解得11a6=143,即a6=13. 所以公差d=a6-a5=2,所以an=a5+(n-5)d=11+(n-5)×2=2n+1, 所以Sn==(n+2)n. 令(n+2)n>195,则n2+2n-195>0,解得n>13或n<-15(舍).故选B. 6.D ∵{an}为等差数列,∴S5=5a3=-15, ∴a3=-3, ∴d=a3-a2=-3-1=-4. 7.B ∵Sn=an2+bn,∴{an}为等差数列, ∴S7====49. 8.C 由题意可设每层有n个环,则三层共有3n个环,∴每一环扇面形石板的块数构成以a1=9为首项、9为公差的等差数列{an},且项数为3n.不妨设上层扇面形石板总数为S1,中层总数为S2,下层总数为S3,∴S3-S2=[9(2n+1)·n+×9]-[9(n+1)·n+×9]=9n2=729,解得n=9(负值舍去).则三层共有扇面形石板(不含天心石)27×9+×9=27×9+27×13×9=27×14×9=3 402(块).故选C. 9.A 本题主要考查等差数列的通项公式和前n项和公式,考查考生的运算求解能力,考查的核心素养是逻辑推理、数学运算. 方法一:设等差数列{an}的公差为d,∵∴解得∴an=a1+(n-1)d=-3+2(n-1)=2n-5,Sn=na1+d=n2-4n.故选A. 方法二:设等差数列{an}的公差为d,∵∴解得选项A,a1=2×1-5=-3;选项B,a1=3×1-10=-7,排除B;选项C,S1=2-8=-6,排除C;选项D,S1=-2=-,排除D.故选A. 10.4 解析:本题主要考查等差数列的通项公式与前n项和公式,考查考生的运算求解能力,考查的核心素养是数学运算. 设等差数列{an}的公差为d,由a2=3a1,即a1+d=3a1,得d=2a1, 所以====4. 11.14 解析:∵{an}为等差数列,∴a6=a3+3d,a7=a3+4d, ∴a6+a7=7d=14,∴d=2,∴a4=a3+d=2, ∴S7=7a4=7×2=14. 12.3 解析:设{an}的公差为d.因为a4+a5=25,S6=57,所以解得所以{an}的公差为3. 13.1.5 解析:设此等差数列{an}的公差为d,前n项和为Sn,由题意得,即解得所以夏至的日影子长为1.5尺. 14.A tan=tan=tan=,故选A. 15.8 解析:∵a7+a8+a9>0,a7+a9=2a8, ∴3a8>0,即a8>0. 又∵a7+a10=a8+a9<0,∴a9<0, ∴等差数列前8项的和最大.故n=8. 16. 解析:解法一:由于Sn=7n+d=n2+n, 设f(x)=x2+x,则其图象的对称轴为直线x=-.当且仅当n=8时,Sn取得最大值,故7.5<-<8.5,解得-1<d<-. 解法二:由题意,得a8>0,a9<0,所以7+7d>0,且7+8d<0,即-1<d<-.查看更多