- 2021-06-23 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
A佳经典联考2019-2020学年高二1月期末联考数学参考答案
A佳经典•高二期末考试试题 数学 1 2 3 4 5 6 7 8 9 10 11 12 D A B C A B C D B A C B 一、选择题 1.D ,,则 2.A 3.B , 4.C 5.A 6.B 7.C 8.D 9.B 10.A 的周期,在同一坐标系下分别画出和的图像 11.C 是的中点,由中位线可知, 又, 12.B ,在 上不单调,即在上有极值点,所以在上有解,即在上有解 (1) 当有一个解时,则,所以或者 (2) 当有两解时,根据根的分布,则 无解 所以或者 二、 填空题 13. 14. 15. 16. 画出图像,连接,则,故,又直线的斜率为,故,又,所以,又在双曲线上, 故,化简得, 故.因为,故解得 三、 解答题 17.(1), 当时,,, 当时,,,即 ············2分 数列是以为首项,为公比的等比数列, ························································3分 ,···························5分 (2) ···················· 7分 ·······························10分 18.(1),…3分 的最大值为, ··············································4分 此时即·······6分 (2),, ····8分 由得得,········10分 故 ·············································· 12分 19.解法一:(1)为矩形,且平面平面, 平面平面,在中,, 在梯形中,,从而. 在中,,可知, 在中,,可知, 又,平面··································6分 (2)取的中点,连接,由知, 由知,为二面角的平面角.······9分 由(1)知平面,,又, ,···············11分 ············12分 解法二:(2)为矩形,且平面平面,平面, 又,所以可以以为原点建立如图所示空间直角坐标系,则 , , 设平面的法向量为,则 , 令,得.·················································8分 设平面的法向量为,则, 令,得.··················································10分 ,·········································11分 所以二面角的正弦值为. ·································12分 20.(1)设“从学习时间的6个数据中随机选取2个数据,求这2个数据不相邻”为事件, 这6个数据为 抽取2个数据的基本事件有,共种, 其中相邻的有,共种, ··········································3分 所以······················································5分 (2)前四组数据为: 学习时间(第天) 3 4 5 6 当天得分 17 20 19 24 ······6分 ·······························8分 ···························10分 当时,,此时成立 当时,,此时成立 为恰当回归方程.···········································12分 21.(1) ····················································4分 (2)若直线斜率不存在,则直线方程为, 此时,·························································5分 若直线斜率存在,设直线方程为,, 联立,得: ∴ ······································7分 ∴∴···················8分 ∵直线与圆相切,∴,即·····················9分 ∴ 当时, 当时,,·······························11分 当且仅当时,等号成立 ∴·······················12分 22. (1),定义域为 ····································1分 当时,,所以在区间上为减函数, 当时,,所以在区间上为增函数,··················2分 所以,无极小值 ; 的递减区间,递增区间 ·······························4分 (2)因为,所以················· 6分 ① 当时,,在上单调递减, 由, 所以,即,得 ····················8分 ① 当时,,在上单调递增, 所以,即,得 ·································10分 ③ 当时, 在,,在上单调递减,在,,在上单调递增 所以 即 () 由(Ⅰ)知在上单调递减 故,而,所以不等式()无解 综上所述,. ·····································12分 查看更多