A佳经典联考2019-2020学年高二1月期末联考数学参考答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

A佳经典联考2019-2020学年高二1月期末联考数学参考答案

A佳经典•高二期末考试试题 数学 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ D A B C A B C D B A C B 一、选择题 ‎1.D ,,则 ‎2.A ‎ ‎3.B ,‎ ‎4.C ‎ ‎5.A ‎ ‎6.B ‎ ‎7.C ‎8.D ‎ ‎9.B ‎ ‎ ‎ ‎10.A 的周期,在同一坐标系下分别画出和的图像 ‎11.C 是的中点,由中位线可知,‎ 又, ‎ ‎12.B ,在 上不单调,即在上有极值点,所以在上有解,即在上有解 (1) 当有一个解时,则,所以或者 (2) 当有两解时,根据根的分布,则 无解 所以或者 二、 填空题 ‎13. ‎ ‎14. ‎ ‎15.‎ ‎16. 画出图像,连接,则,故,又直线的斜率为,故,又,所以,又在双曲线上,‎ 故,化简得,‎ 故.因为,故解得 ‎ 三、 解答题 ‎17.(1),‎ 当时,,, ‎ 当时,,,即 ············2分 数列是以为首项,为公比的等比数列,‎ ‎························································3分 ‎,···························5分 (2) ‎···················· 7分 ‎·······························10分 ‎18.(1),…3分 的最大值为, ··············································4分 ‎ 此时即·······6分 ‎(2),, ····8分 由得得,········10分 故 ·············································· 12分 ‎19.解法一:(1)为矩形,且平面平面,‎ 平面平面,在中,,‎ 在梯形中,,从而.‎ 在中,,可知,‎ 在中,,可知,‎ 又,平面··································6分 ‎(2)取的中点,连接,由知,‎ 由知,为二面角的平面角.······9分 由(1)知平面,,又,‎ ‎ ,···············11分 ‎ ············12分 解法二:(2)为矩形,且平面平面,平面,‎ 又,所以可以以为原点建立如图所示空间直角坐标系,则 ‎,‎ ‎,‎ 设平面的法向量为,则 ,‎ 令,得.·················································8分 设平面的法向量为,则,‎ 令,得.··················································10分 ‎,·········································11分 ‎ 所以二面角的正弦值为. ·································12分 ‎20.(1)设“从学习时间的6个数据中随机选取2个数据,求这2个数据不相邻”为事件,‎ 这6个数据为 抽取2个数据的基本事件有,共种,‎ 其中相邻的有,共种,‎ ‎··········································3分 所以······················································5分 ‎(2)前四组数据为:‎ 学习时间(第天)‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ 当天得分 ‎17‎ ‎20‎ ‎19‎ ‎24‎ ‎ ······6分 ‎ ·······························8分 ‎ ···························10分 当时,,此时成立 当时,,此时成立 为恰当回归方程.···········································12分 ‎21.(1) ····················································4分 ‎(2)若直线斜率不存在,则直线方程为,‎ 此时,·························································5分 若直线斜率存在,设直线方程为,,‎ 联立,得:‎ ‎∴ ······································7分 ‎∴∴···················8分 ‎∵直线与圆相切,∴,即·····················9分 ‎∴‎ 当时,‎ 当时,,·······························11分 当且仅当时,等号成立 ∴·······················12分 ‎22. (1),定义域为 ····································1分 当时,,所以在区间上为减函数,‎ 当时,,所以在区间上为增函数,··················2分 所以,无极小值 ; ‎ 的递减区间,递增区间 ·······························4分 ‎(2)因为,所以················· 6分 ① 当时,,在上单调递减,‎ 由, 所以,即,得 ····················8分 ① 当时,,在上单调递增,‎ 所以,即,得 ·································10分 ‎③ 当时,‎ 在,,在上单调递减,在,,在上单调递增 ‎ 所以 即 () ‎ 由(Ⅰ)知在上单调递减 故,而,所以不等式()无解 ‎ 综上所述,. ·····································12分 ‎
查看更多

相关文章

您可能关注的文档