- 2021-06-23 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
安徽省大江中学、开城中学2013届高三上学期12月联考数学(理)试题
大江中学、开城中学2013届高三联考 数学试卷(理) 分数:150分,时间:120分钟 第I卷 一 、选择题(本大题共10小题,每小题5分)[来源:学科网ZXXK] 1、若集合,,则A=( ) A B C D 2、若,则实数m的值为( ) A B C D 3、等差数列前项和为,若,那么=( ) A 55 B 40 C 35 D 70 4、函数的图象关于直线y=x对称的图象像大致是( ) 5、设,则“”是“为偶函数”的( ) A、充分不必要条件 B、必要不充分条件 [来源:学*科*网Z*X*X*K] C、充分必要条件 D、既不充分也不必要条件 6、已知函数是偶函数,,,,当时,恒成立,则的大小关系为( ) A 、 B、 C 、 D 、 7、已知向量a=(1,2),ab=5,a-b 的模是,则向量b的模为( ) A B 2 C 5 D 25 8、若函数 有3个不同的零点, 则实数的取值范围 是( ) A. B. C. D. 9、用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 ( ) A 288 B 240 C 144 D 126 10、设,,,,,M, N是平面内给定的不同点, ,,则与的关系为 ( ) A反向平行 B同向平行 C垂直 D既不平行也不垂直 二、 填空题(本大题共5小题,每小题5分) 11 、曲线以及x轴所围成的面积为 _ _ 。 12、展开式中常数项为 。 13、某篮球运动员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为 。 14、已知且, 则= 。 15、设的内角A,B,C所对的边为;①若,则; ②若,则 ; ③若,则 ; ④若,则;⑤若,则。 则以上命题正确的是 。 大江中学、开城中学2013届高三联考 数学试卷(理) 第II卷 班级 姓名 座位号 得分 一 、选择题(本大题共10小题,每小题5分 题号 1 2 3 4 5 6 7 8 9 10 答案 二、 填空题(本大题共5小题,每小题5分) 11、 ;12、 ;13、 ; 14、 ; 15、 。 三 、解答题(本大题共六小题) 16、(本小题满分12分) 已知函数,() (Ⅰ)x=1为的极值点,求的值; (Ⅱ)若的图像在点处的切线方程为,求在区间上的最大值。 17、(本小题满分12分) 在各项均为正数的等比数列中, 已知, 且,,成等差数列。 (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前项和。 18、(本小题满分12分) 设函数.[来源:学*科*网Z*X*X*K] (Ⅰ)求的对称中心及单调递减区间; (Ⅱ) 记的内角的对边分别为,若,, ,求 的值及的面积. 19 、(本小题满分12分) 某校要用三辆客车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,客车走公路①堵车的概率为;客车走公路②堵车的概率为p,若甲、乙两辆客车走公路①,丙客车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。 (Ⅰ)若三辆客车中恰有一辆客车被堵车的概率为,求走公路②堵车的概率; (Ⅱ)在(Ⅰ)的条件下,求三辆客车被堵车辆的个数X的分布列和数学期望。 20、(本小题满分13分) 设数列的前项和为,且。 (Ⅰ)求数列的通项公式; (Ⅱ)设数列满足:,又,且数列的前项和,求证: 21、(本小题满分14分) 设函数,() (Ⅰ)当时,求的单调区间; (Ⅱ)若对任意及,恒有成立,求实数的取值范围。 大江中学、开城中学2013届高三联考 数学试卷参考答案(理) 一、 选择题(本大题共10小题,每小题5分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C D B A A[来源:学。科。网] D C A B B 二 、填空题(本大题共5小题,每小题5分)[来源:Zxxk.Com] 11、 ; 12、-220 ;13、 ;14、;15 ①②③ 三 、解答题(本大题共六小题) 16解:(Ⅰ),x=1为的极值点,则,即,所以或,当或时, ,x=1为的极值点,故或。 (Ⅱ)的图像在点处的切线方程为,则 , 即 , 解得 ,所以, 由可知和是的极值点 ,,, 所以在区间[-2,4]上的最大值为8。 17.解: (Ⅰ)设数列的公比为,由题意得且 即 解得或(舍去), 所以数列的通项公式为 . (Ⅱ)由(Ⅰ)可得 所以 两式相减得 即 . 18解:(Ⅰ)= 令,则,所以的对称中心为(,1)( ), 单调递减区间为 (,)() (Ⅱ)由,A=,, ,即,解得b=1或b=2 当b=1时, s== ,当b=2时, s== 19解:(Ⅰ)由已知条件得 , 解得:,所以,走公路②堵车的概率为; (Ⅱ)X的可能取值为0,1,2,3。 ,, , , 则X的分布列为 X 0 1 2 3 P 所以 EX= 20 解:(Ⅰ)由 得(), 两式相减并整理得(),又,易知,故数列是首项为,公比为的等比数列,所以。 (Ⅱ)证明:由(1)知, 故 21 解:(Ⅰ), ,则 = 当时,,令,得或 令,得; 当时,,令,得或,令,得; 当时, 综上所述,当时,函数的单调递减区间为,,单调递增区间为;当时函数在上单调递减;当时,函数的单调递减区间为,,单调递增区间为; (Ⅱ)由(Ⅰ)知,当时,函数在区间[1,2]上单调递减,当时,,因为,及恒成立,所以,即对恒成立,所以恒成立,所以,解得,故实数的取值范围是。查看更多