- 2021-06-22 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018版高考数学(人教A版理)一轮复习:第3章 第7节 课时分层训练23
课时分层训练(二十三) 正弦定理、余弦定理应用举例 A组 基础达标 (建议用时:30分钟) 一、选择题 1.如图379所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为( ) 【导学号:01772135】 图379 A.a km B.a km C.a km D.2a km B [在△ABC中,AC=BC=a,∠ACB=120°, ∴AB2=a2+a2-2a2cos 120°=3a2,AB=a.] 2.如图3710,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( ) 图3710 A.北偏东10° B.北偏西10° C.南偏东80° D.南偏西80° D [由条件及题图可知,∠A=∠B=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°.] 3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( ) 【导学号:01772136】 A.10海里 B.10海里 C.20海里 D.20海里 A [如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得=, 解得BC=10(海里).] 4.如图3711,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为 ( ) 图3711 A.8 km/h B.6 km/h C.2 km/h D.10 km/h B [设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知,sin θ==,从而cos θ=,所以由余弦定理得2=2+12-2××2×1×,解得v=6.] 5.在不等边三角形ABC中,角A,B,C所对的边分别为a,b,c,其中a 为最大边,如果sin2(B+C)查看更多