2018版高考数学(人教A版理)一轮复习:第3章 第7节 课时分层训练23

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018版高考数学(人教A版理)一轮复习:第3章 第7节 课时分层训练23

课时分层训练(二十三) ‎ 正弦定理、余弦定理应用举例 A组 基础达标 ‎(建议用时:30分钟)‎ 一、选择题 ‎1.如图379所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为(  )‎ ‎ 【导学号:01772135】‎ 图379‎ A.a km       B.a km C.a km D.2a km B [在△ABC中,AC=BC=a,∠ACB=120°,‎ ‎∴AB2=a2+a2-2a2cos 120°=3a2,AB=a.]‎ ‎2.如图3710,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的(  )‎ 图3710‎ A.北偏东10°‎ B.北偏西10°‎ C.南偏东80°‎ D.南偏西80°‎ D [由条件及题图可知,∠A=∠B=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°.]‎ ‎3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(  ) ‎ ‎【导学号:01772136】‎ A.10海里 B.10海里 C.20海里 D.20海里 A [如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得=,‎ 解得BC=10(海里).]‎ ‎4.如图3711,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为 (  )‎ 图3711‎ A.8 km/h B.6 km/h C.2 km/h D.10 km/h B [设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知,sin θ==,从而cos θ=,所以由余弦定理得2=2+12-2××2×1×,解得v=6.]‎ ‎5.在不等边三角形ABC中,角A,B,C所对的边分别为a,b,c,其中a 为最大边,如果sin2(B+C)0.‎ 则cos A=>0.‎ ‎∵0.‎ 因此得角A的取值范围是.]‎ 二、填空题 ‎6.在地上画一个∠BDA=60°,某人从角的顶点D出发,沿角的一边DA行走10米后,拐弯往另一方向行走14米正好到达∠BDA的另一边BD上的一点,我们将该点记为点B,则B与D之间的距离为________米.‎ ‎ 【导学号:01772137】‎ ‎16 [如图所示,设BD=x m,则142=102+x2-2×10×x×cos 60°,整理得x2-10x-96=0,x=-6(舍去),x=16,∴x=16(米).]‎ ‎7.如图3712,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米. ‎ ‎【导学号:01772138】‎ 图3712‎ ‎10 [在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,=,BC==10.在Rt△ABC中,tan 60°=,AB=BCtan 60°=10(米).]‎ ‎8.如图3713所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B处,海轮按北偏西60°的方向航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分钟.‎ 图3713‎  [由已知得∠ACB=45°,∠B=60°,‎ 由正弦定理得=,‎ 所以AC===10,‎ 所以海轮航行的速度为=(海里/分钟).]‎ 三、解答题 ‎9.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A,B,且AB长为80米,当航模在C处时,测得∠ABC=105°和∠BAC=30°,经过20秒后,航模直线航行到D处,测得∠BAD=90°和∠ABD=45°.请你根据以上条件求出航模的速度.(答案可保留根号)‎ 图3714‎ ‎[解] 在△ABD中,∵∠BAD=90°,∠ABD=45°,‎ ‎∴∠ADB=45°,∴AD=AB=80,∴BD=80.3分 在△ABC中,=,‎ ‎∴BC===40.6分 在△DBC中,DC2=DB2+BC2-2DB·BCcos 60°‎ ‎=(80)2+(40)2-2×80×40×=9 600.‎ ‎∴DC=40,航模的速度v==2米/秒. 12分 ‎10.如图3715,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.‎ 图3715‎ ‎(1)求渔船甲的速度;‎ ‎(2)求sin α的值.‎ ‎[解] (1)依题意知,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.3分 在△ABC中,由余弦定理,得 BC2=AB2+AC2-2AB·AC·cos∠BAC ‎=122+202-2×12×20×cos 120°=784,解得BC=28.‎ 所以渔船甲的速度为=14海里/小时.7分 ‎(2)在△ABC中,因为AB=12,∠BAC=120°,BC=28,∠BCA=α ‎,由正弦定理,得=,9分 即sin α===.12分 B组 能力提升 ‎(建议用时:15分钟)‎ ‎1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是 (  ) ‎ ‎【导学号:01772139】‎ A.50 m B.100 m C.120 m D.150 m A [设水柱高度是h m,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,BC=h,根据余弦定理得,(h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50 m.]‎ ‎2.(2014·全国卷Ⅰ)如图3716,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=________m.‎ 图3716‎ ‎150 [根据图示,AC=100 m.‎ 在△MAC中,∠CMA=180°-75°-60°=45°.‎ 由正弦定理得=⇒AM=100 m.‎ 在△AMN中,=sin 60°,‎ ‎∴MN=100×=150(m).]‎ ‎3.已知在东西方向上有M,N两座小山,山顶各有一个发射塔A,B,塔顶A,B的海拔高度分别为AM=100米和BN=200米,一测量车在小山M的正南方向的点P处测得发射塔顶A的仰角为30°,该测量车向北偏西60°方向行驶了100米后到达点Q,在点Q处测得发射塔顶B处的仰角为θ,且∠BQA=θ,经测量tan θ=2,求两发射塔顶A,B之间的距离.‎ 图3717‎ ‎[解] 在Rt△AMP中,∠APM=30°,AM=100,∴PM=100,连接QM(图略),在△PQM中,∠QPM=60°,3分 又PQ=100,‎ ‎∴△PQM为等边三角形,‎ ‎∴QM=100.6分 在Rt△AMQ中,由AQ2=AM2+QM2,得AQ=200.‎ 在Rt△BNQ中,tan θ=2,BN=200,‎ ‎∴BQ=100,cos θ=.9分 在△BQA中,BA2=BQ2+AQ2-2BQ·AQcos θ=(100)2,‎ ‎∴BA=100.‎ 即两发射塔顶A,B之间的距离是100米.12分
查看更多

相关文章

您可能关注的文档