- 2021-06-22 发布 |
- 37.5 KB |
- 25页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
专题01 集合与常用逻辑用语-备战2018年高考数学(理)之纠错笔记系列
专题01 集合与常用逻辑用语 易错点1 忽略集合中元素的互异性 设集合,若,则实数的值为 A. B. C. D.或或 【错解】由得或,解得或或,所以选D. 【参考答案】B 集合中元素的特性: (1)确定性. 一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合; (2)互异性. 集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素 (3)无序性. 集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系 1.已知集合,若,则的值为________. 【解析】由题意得或,则或. 当时,且,根据集合中元素的互异性可知不满足题意; 当时,,而,故. 【答案】 易错点2 误解集合间的关系致错 已知集合,则下列关于集合A与B的关系正确的是 A. B. C. D. 【错解】因为,所以,所以,故选B. 【参考答案】D (1)元素与集合之间有且仅有“属于()”和“不属于()”两种关系,且两者必居其一.判断一个对象是否为集合中的元素,关键是看这个对象是否具有集合中元素的特征. (2)包含、真包含关系是集合与集合之间的关系,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作(或);如果集合,但存在元素,且,我们称集合是集合的真子集,记作(或). 2.已知集合,则下列关于集合A与B的关系正确的是 A. B. C. D. 【答案】A 易错点3 忽视空集易漏解 已知集合,,若,则实数m的取值范围是 A. B. C. D. 【错解】∵,∴,∴. 由知,∴,则. ∴m的取值范围是. 【错因分析】空集不含任何元素,在解题过程中容易被忽略,特别是在隐含有空集参与的集合问题中,往往容易因忽略空集的特殊性而导致漏解.由并集的概念知,对于任何一个集合A,都有,所以错解中忽略了时的情况. 【参考答案】C (1)对于任意集合A,有,,所以如果,就要考虑集合可能是;如果,就要考虑集合可能是. (2)空集是任何集合的子集,是任何非空集合的真子集,即,. 3.若,若,则实数m的取值范围是 A. B. C. D. 【解析】当时,,∴m>2; 当时,由题意,得,解得. ∴m≥−1,即所求m的取值范围是. 【答案】D 易错点4 A是B的充分条件与A的充分条件是B的区别 设,则“”是“”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 【错解】选A. 【参考答案】B (1)“A的充分不必要条件是B”是指B能推出A,且A不能推出B,即B⇒A且AB; (2)“A是B的充分不必要条件”则是指A能推出B,且B不能推出A,即A⇒B且. 4.已知,,若的一个充分不必要条件是,则实数的取值范围是 A. B. C. D. 【解析】由基本不等式得,,由,又因为的一个充分不必要条件是,则,故选A. 【答案】A 易错点5 命题的否定与否命题的区别 命题“且”的否定形式是 A. B. C. D. 【错解】错解1:“”的否定为“”,“且”的否定为“ 且”,故选C. 【参考答案】D 1.命题的否定与否命题 “否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论. 2.命题的否定 (1)对“若p,则q”形式命题的否定; (2)对含有逻辑联结词命题的否定; (3)对全称命题和特称命题的否定. (4)全称(或存在性)命题的否定与命题的否定有着一定的区别,全称(或存在性)命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定,而命题的否定则直接否定结论即可.从命题形式上看,全称命题的否定是存在性命题,存在性命题的否定是全称命题. 5.已知,则¬p是¬q A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 【答案】A 将命题的否定形式错误地认为:,∴x2+4x−5<0导致错误. 一、集合 1.元素与集合的关系:. 2.集合中元素的特征: (1)确定性:一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合. (2)互异性:集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素. (3)无序性:集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系. 3.常用数集及其记法: 集合 非负整数集(自然数集) 正整数集 整数集 有理数集 实数集 复数集 符号 或 4.集合间的基本关系 表示 关系 自然语言 符号语言 图示 基 本基本关系 子集 集合A中任意一个元素都是集合B的元素 (或 ) 真子集 (或 ) 相等 集合A,B中元素相同或集合A,B互为子集 空集 空集是任何集合的子集,是任何非空集合的真子集 学* , (1)若集合A中含有n个元素,则有个子集,有个非空子集,有个真子集,有个非空真子集. (2)子集关系的传递性,即. (3)空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 5.集合的基本运算 运算 自然语言 符号语言 Venn图 交集 由属于集合A且属于集合B的所有元素组成的集合 并集 补集 由全集U中不属于集合A的所有元素组成的集合 (1)集合运算的相关结论 交集 并集 补集 (2) 二、命题及其关系、充分条件与必要条件 1.四种命题 命题 表述形式 原命题 若p,则q 逆命题 若q,则p 否命题 若,则 逆否命题 若,则 2.四种命题间的关系 (1)常见的否定词语 正面词语 = >(<) 是 都是 任意(所有)的 任两个 至多有1(n)个 至少有1个 否定词 () 不是 不都是 某个 某两个 至少有2(n+1)个 1个也没有 (2)四种命题的真假关系 ①两个命题互为逆否命题,它们有相同的真假性; ②两个命题互为逆命题或互为否命题,它们的真假性没有关系. 3.充分条件与必要条件的概念 (1)若p⇒q,则p是q的充分条件,q是p的必要条件; (2)若p⇒q且qp,则p是q的充分不必要条件; (3)若pq且q⇒p,则p是q的必要不充分条件; (4) 若p⇔q,则p是q的充要条件; (5) 若pq且qp,则p是q的既不充分也不必要条件. (1)等价转化法判断充分条件、必要条件 ①p是q的充分不必要条件是的充分不必要条件; ②p是q的必要不充分条件是的必要不充分条件; ③p是q的充要条件是的充要条件; ④p是q的既不充分也不必要条件是的既不充分也不必要条件. ④若,则p是q的必要不充分条件; ⑤若,则p是q的充要条件; ⑥若且,则p是q的既不充分也不必要条件. 三、逻辑联结词、全称量词与存在量词 2.复合命题的真假判断 “p且q”“p或q”“非p”形式的命题的真假性可以用下面的表(真值表)来确定: p q 真 真 假 假 真 真 真 假 假 真 真 假 假 真 真 假 真 假 假 假 真 真 假 假 3.全称量词和存在量词 量词名称 常见量词 符号表示 全称量词 所有、一切、任意、全部、每一个等 存在量词 存在一个、至少一个、有些、某些等 4.含有一个量词的命题的否定 全称命题的否定是特称命题,特称命题的否定是全称命题,如下所示: 命题 命题的否定 含有逻辑联结词的命题的真假判断: (1)中一假则假,全真才真. (2)中一真则真,全假才假. (3)p与真假性相反. 注意:命题的否定是直接对命题的结论进行否定;而否命题则是对原命题的条件和结论分别否定.不能混淆这两者的概念. 1.[2017新课标Ⅱ卷理]设集合,.若,则 A. B. C. D. 【答案】C 2.[2017新课标Ⅲ卷理]已知集合A=,B=,则AB中元素的个数为 A.3 B.2 C.1 D.0 【答案】B 【解析】集合中的元素为点集,由题意,可知集合A表示以为圆心,为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又圆 与直线相交于两点,,则中有2个元素.故选B. 【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 3.[2016浙江卷理]命题“,使得”的否定形式是 A.,使得 B.,使得 C.,使得 D.,使得 【答案】D 【解析】的否定是,的否定是,的否定是.故选D. 4.[2017北京卷理]设m,n为非零向量,则“存在负数,使得”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】A 【名师点睛】判断充分必要条件的的方法: (1)根据定义,若,那么是的充分不必要条件,同时是的必要不充分条件;若,那么,互为充要条件;若,那么就是既不充分也不必要条件. (2)当命题是以集合形式给出时,那就看包含关系,已知,若,那么是的充分不必要条件,同时是的必要不充分条件;若,那么,互为充要条件;若没有包含关系,那么就是既不充分也不必要条件. (3)命题的等价性,根据互为逆否命题的两个命题等价,将是条件的判断,转化为是条件的判断. 5.[2017天津卷理]设,则“”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A 【解析】,但时,不满足,所以“”是“”的充分而不必要条件,故选A. 【名师点睛】本题考查充要条件的判断,若,则是的充分条件,若,则是的必要条件,若,则是的充要条件;从集合的角度看,若,则是的充分条件,若,则是的必要条件,若,则是的充要条件,若是的真子集,则是的充分而不必要条件,若是的真子集,则是的必要而不充分条件. 6.已知集合,则实数a的值为 A.−1 B.0 C.1 D.2 【答案】A 【解析】由题意,1+a=0,∴a=−1,本题选择A选项. 7.已知集合,则 A. B. C. D. 8.设命题p:,则为 A. B. C. D. 【答案】C 【解析】命题p:,则为.故选C. 9.“若,则,都有成立”的逆否命题是 A.,有成立,则 B.,有成立,则 C.,有成立,则 D.,有成立,则 【答案】D 【解析】由原命题与逆否命题的关系可得:“若,则,都有 成立”的逆否命题是“,有成立,则”.本题选择D选项. 10.已知集合,集合,则集合 A. B. C. D. 【答案】C 11.已知集合A={x|1<2x≤16},B={x|x4 B.a≥4 C.a≥0 D.a>0 【答案】A 【解析】由题意可知:A={x|0查看更多
- 当前文档收益归属上传用户