- 2021-06-22 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高中数学必修1教案:第二章(第16课时)指数函数3
课 题:2.6.3 指数函数3 教学目的: 1.了解函数图象的变换;能运用指数函数的图象和性质解决一些简单问题. 2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力; 3.培养发现问题和提出问题的意识、善于独立思考的习惯 教学重点:函数图象的变换;指数函数性质的运用 教学难点:函数图象的变换;指数函数性质的运用. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入:指数函数的定义、图像、性质(定义域、值域、单调性) 二、新授内容: 例1(课本第82页 例2)用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=的图象的关系, ⑴y=与y=. ⑵y=与y=. 解:⑴作出图像,显示出函数数据表 x -3 -2 -1 0 1 2 3 0.125 0.25 0.5 1 2 4 8 0.25 0.5 1 2 4 8 16 0.5 1 2 4 8 16 32 比较函数y=、y=与y=的关系:将指数函数y=的图象向左平行移动1个单位长度,就得到函数y=的图象,将指数函数y=的图象向左平行移动2个单位长度,就得到函数y=的图象 ⑵作出图像,显示出函数数据表 x -3 -2 -1 0 1 2 3 0.125 0.25 0.5 1 2 4 8 0.625 0.125 0.25 0.5 1 2 4 0.3125 0.625 0.125 0.25 0.5 1 2 比较函数y=、y=与y=的关系:将指数函数y=的图象向右平行移动1个单位长度,就得到函数y=的图象,将指数函数y=的图象向右平行移动2个单位长度,就得到函数y=的图象 小结:⑴ y=与y=的关系:当m>0时,将指数函数y=的图象向右平行移动m个单位长度,就得到函数y=的图象;当m<0时,将指数函数y=的图象向左平行移动m个单位长度,就得到函数y=的图象 例2 ⑴已知函数 用计算器或计算机作出函数图像,求定义域、值域,并探讨与图像的关系 解: 定义域:xÎR 值域: 关系:将的图像y轴右侧的部分翻折到y轴左侧的到的图像,关于y轴对称. ⑵已知函数 用计算器或计算机作出函数图像,求定义域、值域,并探讨与图像的关系 解: 定义域:xÎR 值域: 关系:将(x>1)的图像在直线x=1右侧的部分翻折到直线x=1左侧得到的图像,是关于直线x=1对称 ⑵推广:对于有些复合函数的图象,则常用基本函数图象+变换方法作出: 基本函数图象+变换:即把我们熟知的基本函数图象,通过平移、作其对称图等方法,得到我们所要求作的复合函数的图象,如上例,这种方法我们遇到的有以下几种形式: 函 数 y=f(x) y=f(x+a) a>0时,向左平移a个单位;a<0时,向右平移|a|个单位. y=f(x)+a a>0时,向上平移a个单位;a<0时,向下平移|a|个单位. y=f(-x) y=f(-x)与y=f(x)的图象关于y轴对称. y=-f(x) y=-f(x)与y=f(x)的图象关于x轴对称. y=-f(-x) y=-f(-x)与y=f(x)的图象关于原点轴对称. y=f(|x|) y=f(|x|)的图象关于y轴对称,x0时函数即y=f(x),所以x<0时的图象与x0时y=f(x)的图象关于y轴对称. y=|f(x)| ∵,∴y=|f(x)|的图象是y=f(x)0与y=f(x)<0图象的组合. y= y=与y=f(x)的图象关于直线y=x对称. 以上是在高一阶段我们看到的几种函数图象的变换,但随着知识的增加,还会有许多较复杂的变换,以后再作研究. 例3探讨函数和 的图象的关系,并证明关 于y轴对称 证:设P(,)是函数 的图象上任意一点 则 而P(,)关于y轴的对称点Q是(-,) ∴ 即Q在函数的图象上 由于P是任意取的,所以上任一点关于y轴的对称点都在的图象上 同理可证: 图象上任意一点也一定在函数的图象上 ∴ 函数和的图象关于y轴对称 例4 已知函数 求函数的定义域、值域 解:作出函数图像,观察分析讨论,教师引导、整理 定义域为 R 由得 ∵xÎR, ∴△0, 即 , ∴, 又∵,∴ 三、小结 本节课学习了以下内容:函数图像的变换 四、课后作业: 五、板书设计(略) 六、课后记:查看更多