专题17+排列、组合、二项式定理-2017年高考数学(理)备考学易黄金易错点

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

专题17+排列、组合、二项式定理-2017年高考数学(理)备考学易黄金易错点

‎1.某电视台一节目收视率很高,现要连续插播4个广告,其中2个不同的商业广告和2个不同的公益宣传广告,要求最后播放的必须是商业广告,且2个商业广告不能连续播放,则不同的播放方式有(  )‎ A.8种B.16种C.18种D.24种 答案 A 解析 可分三步:第一步,最后一个排商业广告有A种;第二步,在前两个位置选一个排第二个商业广告有A种;第三步,余下的两个排公益宣传广告有A种.根据分步乘法计数原理,可得不同的播放方式共有AAA=8(种).故选A.‎ ‎2.为配合足球国家战略,教育部特派6名相关专业技术人员到甲、乙、丙三所足校进行专业技术培训,每所学校至少一人,其中王教练不去甲校的分配方案种数为(  )‎ A.60 B.120‎ C.240 D.360‎ 答案 D 分配方案.‎ ‎3.设(1-2x)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,则代数式a1+2a2+3a3+4a4+5a5+6a6+7a7的值为(  )‎ A.-14 B.-7‎ C.7 D.14‎ 答案 A 解析 对已知等式的两边求导,得 ‎-14(1-2x)6=a1+2a2x+3a3x2+4a4x3+5a5x4+6a6x5+7a7x6,‎ 令x=1,有a1+2a2+3a3+4a4+5a5+6a6+7a7=-14.‎ 故选A.‎ ‎4.某天连续有7节课,其中语文、英语、物理、化学、生物5科各1节,数学2节.在排课时,要求生物课不排第1节,数学课要相邻,英语课与数学课不相邻,则不同排法的种数为(  )‎ A.408 B.480‎ C.552 D.816‎ 答案 A ‎5.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(  )‎ A.24 B.48‎ C.60 D.72‎ 答案 D 解析 由题可知,五位数为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C,再将剩下的4个数字排列得到A,则满足条件的五位数有C·A=72(个).选D.‎ ‎6.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(  )‎ A.24B.18C.12D.9‎ 答案 B 解析 从E到F的最短路径有6条,从F到G的最短路径有3条,所以从E到G的最短路径为6×3=18(条),故选B.‎ ‎7. (2x+)5的展开式中,x3的系数是______________.(用数字填写答案)‎ 答案 10‎ 解析 (2x+)5展开式的通项公式k∈{0,1,2,3,4,5},‎ 令5-=3,解得k=4,得∴x3的系数是10.‎ ‎4.在(-)n的二项式中,所有项的二项式系数之和为256,则常数项等于________.‎ 答案 112‎ 解析 2n=256,n=8,‎ 通项 取k=2,常数项为C(-2)2=112.‎ ‎8.(1+2x)10的展开式中系数最大的项是________.‎ 答案 15360x7‎ ‎9.用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,则所有涂色方法的种数为________.‎ 答案 260‎ 解析 如图所示,‎ 将4个小方格依次编号为1,2,3,4.如果使用2种颜色,则只能是第1,4个小方格涂一种,第2,3个小方格涂一种,方法种数是CA=20;如果使用3种颜色,若第1,2,3个小方格不同色,第4个小方格只能和第1个小方格相同,方法种数是CA=60,若第1,2,3个小方格只用2种颜色,则第4个方格只能用第3种颜色,方法种数是C×3×2=60;如果使用4种颜色,方法种数是CA=120.根据分类加法计数原理,知总的涂法种数是20+60+60+120=260. ‎ ‎10. (a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=____________.‎ 答案 3‎ 解析 设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,‎ 令x=1,得16(a+1)=a0+a1+a2+a3+a4+a5,①‎ 令x=-1,得0=a0-a1+a2-a3+a4-a5.②‎ ‎①-②,得16(a+1)=2(a1+a3+a5),‎ 即展开式中x的奇数次幂的系数之和为a1+a3+a5=8(a+1),所以8(a+1)=32,解得a=3.‎ ‎11.已知等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定义映射f:(a1,a2,a3,a4)→(b1,b2,b3,b4),则f(4,3,2,1)=____________.‎ 答案 (0,-3,4,-1)‎ 易错起源1、两个计数原理 例1、(1)如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有(  )‎ A.72种 B.48种 C.24种 D.12种 ‎(2)如果一个三位正整数“a1a2a3”满足a1
查看更多