高中数学必修1人教A同步练习试题及解析第3章3_1_1课时练习及详解

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高中数学必修1人教A同步练习试题及解析第3章3_1_1课时练习及详解

高中数学必修一课时练习 ‎ ‎1.函数f(x)=log5(x-1)的零点是(  )‎ A.0           B.1‎ C.2 D.3‎ 解析:选C.log5(x-1)=0,解得x=2,‎ ‎∴函数f(x)=log5(x-1)的零点是x=2,故选C.‎ ‎2.根据表格中的数据,可以判断方程ex-x-2=0必有一个根在区间(  )‎ x ‎-1‎ ‎0‎ ‎1‎ ‎2‎ ‎3‎ ex ‎0.37‎ ‎1‎ ‎2.78‎ ‎7.39‎ ‎20.09‎ x+2‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ A.(-1,0) B.(0,1)‎ C.(1,2) D.(2,3)‎ 解析:选C.设f(x)=ex-x-2,∵f(1)=2.78-3=-0.22<0,f(2)=7.39-4=3.39>0.∴f(1)f(2)<0,由根的存在性定理知,方程ex-x-2=0必有一个根在区间(1,2).故选C.‎ ‎3.函数f(x)=的零点个数为(  )‎ A.0 B.1‎ C.2 D.3‎ 解析:选C.当x≤0时,由f(x)=x2+2x-3=0,得x1=1(舍去),x2=-3;当x>0时,由f(x)=-2+lnx=0,得x=e2,所以函数f(x)的零点个数为2,故选C.‎ ‎4.已知函数f(x)=x2-1,则函数f(x-1)的零点是________.‎ 解析:由f(x)=x2-1,得y=f(x-1)=(x-1)2-1=x2-2x,∴由x2-2x=0.解得x1=0,x2=2,因此,函数f(x-1)的零点是0和2.‎ 答案:0和2‎ ‎1.若函数f(x)=ax+b只有一个零点2,那么函数g(x)=bx2-ax的零点是(  )‎ A.0,2 B.0,- C.0, D.2, 解析:选B.由题意知‎2a+b=0,‎ ‎∴b=-‎2a,∴g(x)=-2ax2-ax=-ax(2x+1),‎ 使g(x)=0,则x=0或-.‎ ‎2.若函数f(x)=x2+2x+a没有零点,则实数a的取值范围是(  )‎ A.a<1 B.a>1‎ C.a≤1 D.a≥1‎ 解析:选B.由题意知,Δ=4-‎4a<0,∴a>1.‎ ‎3.函数f(x)=lnx-的零点所在的大致区间是(  )‎ A.(1,2) B.(2,3)‎ C.(3,4) D.(e,3)‎ 解析:选B.∵f(2)=ln2-1<0,f(3)=ln3->0,‎ ‎∴f(2)·f(3)<0,∴f(x)在(2,3)内有零点.‎ ‎4.下列函数不存在零点的是(  )‎ A.y=x- B.y= C.y= D.y= 解析:选D.令y=0,得A和C中函数的零点均为1,-1;B中函数的零点为-,1;只有D中函数无零点.‎ ‎5.函数y=loga(x+1)+x2-2(0<a<1)的零点的个数为(  )‎ A.0 B.1‎ C.2 D.无法确定 解析:选C.令loga(x+1)+x2-2=0,方程解的个数即为所求函数零点的个数.即考查图象y1=loga(x+1)与y2=-x2+2的交点个数.‎ ‎6.设函数y=x3与y=()x-2的图象的交点为(x0,y0),则x0所在的区间是(  )‎ A.(0,1) B.(1,2)‎ C.(2,3) D.(3,4)‎ 解析:选B.设f(x)=x3-()x-2,‎ 则f(0)=0-()-2<0;f(1)=1-()-1<0;f(2)=23-()0>0.∴函数f(x)的零点在(1,2)上.‎ ‎7.函数f(x)=ax2+2ax+c(a≠0)的一个零点为1,则它的另一个零点为________.‎ 解析:设方程f(x)=0的另一根为x,‎ 由根与系数的关系,得1+x=-=-2,‎ 故x=-3,即另一个零点为-3.‎ 答案:-3‎ ‎8.若函数f(x)=3ax-‎2a+1在区间[-1,1]上存在一个零点,则a的取值范围是________.‎ 解析:因为函数f(x)=3ax-‎2a+1在区间[-1,1]上存在一个零点,所以有f(-1)·f(1)≤0,即(-‎5a+1)·(a+1)≤0,(‎5a-1)(a+1)≥0,‎ 所以或解得a≥或a≤-1.‎ 答案:a≥或a≤-1.‎ ‎9.下列说法正确的有________:‎ ‎①对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0,则函数f(x)在区间(a,b)内一定没有零点.‎ ‎②函数f(x)=2x-x2有两个零点.‎ ‎③若奇函数、偶函数有零点,其和为0.‎ ‎④当a=1时,函数f(x)=|x2-2x|-a有三个零点.‎ 解析:①错,如图.‎ ‎②错,应有三个零点.‎ ‎③对,奇、偶数图象与x轴的交点关于原点对称,其和为0.‎ ‎④设u(x)=|x2-2x|=|(x-1)2-1|,如图向下平移1个单位,顶点与x轴相切,图象与x 轴有三个交点.∴a=1.‎ 答案:③④‎ ‎10.若方程x2-2ax+a=0在(0,1)恰有一个解,求a的取值范围.‎ 解:设f(x)=x2-2ax+a.‎ 由题意知:f(0)·f(1)<0,‎ 即a(1-a)<0,根据两数之积小于0,那么必然一正一负.故分为两种情况.‎ 或 ‎∴a<0或a>1.‎ ‎11.判断方程log2x+x2=0在区间[,1]内有没有实数根?为什么?‎ 解:设f(x)=log2x+x2,‎ ‎∵f()=log2+()2=-1+=-<0,‎ f(1)=log21+1=1>0,∴f()·f(1)<0,函数f(x)=log2x+x2的图象在区间[,1]上是连续的,因此,f(x)在区间[,1]内有零点,即方程log2x+x2=0在区间[,1]内有实根.‎ ‎12.已知关于x的方程ax2-2(a+1)x+a-1=0,探究a为何值时,‎ ‎(1)方程有一正一负两根;‎ ‎(2)方程的两根都大于1;‎ ‎(3)方程的一根大于1,一根小于1.‎ 解:(1)因为方程有一正一负两根,‎ 所以由根与系数的关系得,‎ 解得0<a<1.即当0<a<1时,方程有一正一负两根.‎ ‎(2)法一:当方程两根都大于1时,函数y=ax2-2(a+1)x+a-1的大致图象如图(1)(2)所示,‎ 所以必须满足,或,不等式组无解.‎ 所以不存在实数a,使方程的两根都大于1.‎ 法二:设方程的两根分别为x1,x2,由方程的两根都大于1,得x1-1>0,x2-1>0,‎ 即 ‎⇒.‎ 所以⇒,不等式组无解.‎ 即不论a为何值,方程的两根不可能都大于1.‎ ‎(3)因为方程有一根大于1,一根小于1,函数y=ax2-2(a+1)x+a-1的大致图象如图(3)(4)所示,‎ 所以必须满足或,解得a>0.‎ ‎∴即当a>0时,方程的一个根大于1,一个根小于1.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档