【数学】2019届一轮复习人教A版(文)2-1函数及其表示学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2019届一轮复习人教A版(文)2-1函数及其表示学案

‎ 2.1 函数及其表示 最新考纲 考情考向分析 ‎1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.‎ ‎2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.‎ ‎3.了解简单的分段函数,并能简单应用(函数分段不超过三段).‎ 以基本初等函数为载体,考查函数的表示法、定义域;分段函数以及函数与其他知识的综合是高考热点,题型既有选择、填空题,又有解答题,中等偏上难度.‎ ‎1.函数与映射 函数 映射 两个集合A,B 设A,B是两个非空数集 设A,B是两个非空集合 对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应 如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应 名称 称f:A→B为从集合A到集合B的一个函数 称f:A→B为从集合A到集合B的一个映射 函数记法 函数y=f(x),x∈A 映射:f:A→B ‎2.函数的有关概念 ‎(1)函数的定义域、值域 在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.‎ ‎(2)函数的三要素:定义域、对应关系和值域.‎ ‎(3)函数的表示法 表示函数的常用方法有解析法、图象法和列表法.‎ ‎3.分段函数 若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.‎ 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.‎ 知识拓展 简单函数定义域的类型 ‎(1)f(x)为分式型函数时,定义域为使分母不为零的实数集合;‎ ‎(2)f(x)为偶次根式型函数时,定义域为使被开方式非负的实数的集合;‎ ‎(3)f(x)为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合;‎ ‎(4)若f(x)=x0,则定义域为{x|x≠0};‎ ‎(5)指数函数的底数大于0且不等于1;‎ ‎(6)正切函数y=tanx的定义域为.‎ 题组一 思考辨析 ‎1.判断下列结论是否正确(请在括号中打“√”或“×”)‎ ‎(1)对于函数f:A→B,其值域就是集合B.( × )‎ ‎(2)若两个函数的定义域与值域相同,则这两个函数相等.( × )‎ ‎(3)函数f(x)的图象与直线x=1最多有一个交点.( √ )‎ ‎(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( × )‎ ‎(5)分段函数是由两个或几个函数组成的.( × )‎ 题组二 教材改编 ‎2.[P24T1(4)]函数f(x)=的定义域是________.‎ 答案 (-∞,1)∪(1,4]‎ ‎3.[P25B组T1]函数y=f(x)的图象如图所示,那么,f(x)的定义域是________;值域是________;其中只有唯一的x值与之对应的y值的范围是________.‎ 答案 [-3,0]∪[2,3] [1,5] [1,2)∪(4,5]‎ 题组三 易错自纠 ‎4.已知函数f(x)=x|x|,若f(x0)=4,则x0的值为______.‎ 答案 2‎ 解析 当x≥0时,f(x)=x2,f(x0)=4,‎ 即x=4,解得x0=2.‎ 当x<0时,f(x)=-x2,f(x0)=4,‎ 即-x=4,无解,所以x0=2.‎ ‎5.设f(x)=则f(f(-2))=________.‎ 答案 解析 因为-2<0,所以f(-2)=2-2=>0,‎ 所以f(f(-2))=f=1-=1-=.‎ ‎6.已知函数f(x)=ax3-2x的图象过点(-1,4),则a=________.‎ 答案 -2‎ 解析 由题意知点(-1,4)在函数f(x)=ax3-2x的图象上,所以4=-a+2,则a=-2.‎ 题型一 函数的概念 ‎1.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )‎ 答案 B 解析 A中函数的定义域不是[-2,2],C中图象不表示函数,D中函数值域不是[0,2],故选B.‎ ‎2.有以下判断:‎ ‎①f(x)=与g(x)=表示同一函数;‎ ‎②f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;‎ ‎③若f(x)=|x-1|-|x|,则f=0.‎ 其中正确判断的序号是________.‎ 答案 ②‎ 解析 对于①,由于函数f(x)=的定义域为{x|x∈R且x≠0},而函数g(x)=的定义域是R,所以二者不是同一函数,故①不正确;对于②,f(x)与g(t)的定义域、值域和对应关系均相同,所以f(x)和g(t)表示同一函数,故②正确;‎ 对于③,由于f=-=0,‎ 所以f=f(0)=1,故③不正确.‎ 综上可知,正确的判断是②.‎ 思维升华函数的值域可由定义域和对应关系唯一确定;判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同.‎ 题型二 函数的定义域问题 命题点1 求函数的定义域 典例(1)函数f(x)=+ln(2x-x2)的定义域为( )‎ A.(2,+∞) B.(1,2)‎ C.(0,2) D.[1,2]‎ 答案 B 解析 要使函数有意义,则 解得10,则|log2x|=,解得x=或x=.‎ 故x的集合为.‎ 分类讨论思想在函数中的应用 典例 (1)设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围是( )‎ A. B.[0,1]‎ C. D.[1, +∞)‎ ‎(2)(2017·全国Ⅲ)设函数f(x)=则满足f(x)+f>1的x的取值范围是________.‎ 思想方法指导 (1)求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解;‎ ‎(2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.‎ 解析 (1)令f(a)=t,则f(t)=2t,‎ 当t<1时,3t-1=2t,‎ 令g(t)=3t-1-2t,得g′(t)>0,‎ ‎∴g(t)0},值域为{y|y>0},所以与其定义域和值域分别相同的函数为y=,故选D.‎ ‎4.(2017·湖南衡阳八中一模)已知f(x)=则f等于( )‎ A.-2B.-3C.9D.-9‎ 答案 C 解析 ∵f=log3=-2,‎ ‎∴f=f(-2)=-2=9.‎ ‎5.已知f=+,则f(x)等于( )‎ A.(x+1)2(x≠1) B.(x-1)2(x≠1)‎ C.x2-x+1(x≠1) D.x2+x+1(x≠1)‎ 答案 C 解析 f=+=2-+1,令=t(t≠1),则f(t)=t2-t+1,即f(x)=x2-x+1(x≠1).‎ ‎6.如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP=x(00,‎ f(f(-2))=f(log29)=3×=3×=3×=3×81=243.故选B.‎ ‎8.已知f(x)=的值域为R,那么a的取值范围是( )‎ A.(-∞,-1] B. C. D. 答案 C 解析 要使函数f(x)的值域为R,‎ 需使 ‎∴∴-1≤a<.‎ 即a的取值范围是.‎ ‎9.已知f(+1)=x+2,则f(x)=________.‎ 答案 x2-1(x≥1)‎ 解析 令+1=t,则x=(t-1)2(t≥1),代入原式得f(t)=(t-1)2+2(t-1)=t2-1,‎ 所以f(x)=x2-1(x≥1).‎ ‎10.已知函数f(x)的图象如图所示,则函数g(x)=的定义域是__________.‎ 答案 (2,8]‎ 解析 要使函数有意义,需f(x)>0,由f(x)的图象可知,当x∈(2,8]时,f(x)>0.‎ ‎11.已知函数f(x)=则满足不等式f(1-x2)>f(2x)的x的取值范围是____________.‎ 答案 (-1,-1)‎ 解析 由题意得或 解得-1
查看更多

相关文章