云贵川桂四省2021届高三上学期10月联合考试理科数学试题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

云贵川桂四省2021届高三上学期10月联合考试理科数学试题

云贵川桂四省2021届高三联合考试 数学(理科) 考生注意: 1. 本试卷分笫I 卷(选择题)和笫 II 卷(非选择题)两部分,共 150 分.考试时间 120分 钟. 2.请将各题答案填写在答题卡上. 3. 本试卷主要考试 内容:集合与常用逻 辑用语,函数,导数,三角函数,向量占 40%,数列, 不等式,立体几何占 60%. ' 第 I 卷 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题 目要求的. 1. 已知集合A = {x |0< x + 2< 5} , B= {x |x24} ,则AB = A. (2,3) B. [2,3) C. (-2,,2) D.(2 ,2 ] 2. 已知向量m=(+1, 1),n=(+ 2, 2) ,若(2m+ n) (m n) ,则= A.1 B.11 3 C.8 3 D.2 3. “1 < a < 3”是“lga0 时,xf ´ (x ) 0 成立的 x 的取值范围是 A. ( 2, 0) ∪(0,2) B. ( , 2) ∪2, +) C. (,2)∪ (0,2) D. (0,2)∪(2, +) 12. 在 △ ABC 中,内角 A , B, C 所对的边分别为a ,b,c,2sin C= 2 2 1 2a b ab a b     ,则 △ ABC外接 圆面积的最小值为 A. π 8 B. π 4 C. π 2 D. 第 II 卷 二、填空题:本大题共4 小题,每小题 5 分,共 20 分 把答案填在答题卡中的 横线上. 13. 函数f (x )在(,+)上单调递增,且当 x [ 0 , 4] 时 ,f (x ) = x22, 则关于 x 的不等式 f (x )<0的解集为 . 14. 设Sn 是数列{an}的前 n 项和,若点(Sn , an)在直线 y = 2x + l 上,则 a5= . 15. 设 x , y 满足约束条件 0, | | 2, xy x y     则 z= 4x y 的最小值为 . 【云贵川桂四省2021 届高三联合考试数学 第 2 页( 共 4 页)理科】, • 21-09-66C• 16. 已知数列{an}的前 n 项和为Sn, 前 n 项积为 Tn, 且 3 20191 1 1 1 1e ea a   , 有下述四个结论: ①当数列{an}为等差数列时,S 2021≥0; ② 当数列{an}为等差数列时,S 20210; ③当数列{an}为等比数列时,T 2021> 0 ; ④ 当数列{an}为等比数列时,T2021 <0. 其中所有正确结论的编号是 . 三、解答题:共 70 分 解答应写出文字说明、证明过程或演算步骤. 17. (10 分) 长方体 ABCD —A1B1C1D1 的底面 ABCD 是边长为 1 的正方形,其外接球的表 面积为5 . ( 1) 求该长方体的表面积; ( 2) 求异面直线 BD 与 B1所成角的余弦值. 18. (12 分) 已知{an}是各项均为正数的等比数列,6a2为 a3 , a 4的等差中项. (1) 求{an}的公比 ; ( 2) 若 a1=1, 设 bn = log3a1+log3a2+ …+log3an ,求数列 1 1{ } nb  的前 n 项和. 19. C1 2'分) △ ABC 的内角 A, B, C 的对边分别为a ,b,c. 已知 tan A+tan(A+ π 4 )=l. (1)求 cos A; (2) 若 10AB AC   ,求 △ ABC的面积,并求 a2的最小值 【云贵川桂四省2021 届高三联合考试数学 第 3 页( 共 4 页)理科】, • 21-09-66C• C1 Ai 20. (1 2 分) 在如图所示的空间几何体中,平面 ACD平 面 ABC, 平面 ECB平 面 ABC, △ ACD, △ ECB, △ ACB 都是等边三角形. (1)证明:DE// 平面 ABC. (2)求二面角 EABC 的余弦值. 21. (1 2 分) 已知数列 {an}的首项为 0 , 2anan+l +an+3an+l +2=0. (1) 证明数列 1{ }1na  是等差数列,并求出数列{an}的通项公式; (2) 已知数列 {bn}的前 n项和为Sn, 且数列{bn }满足 2 1 n n n b a   ,若不等式 +1( 1) 3 2n n nS    对一切 nN*恒成立,求的取值范围. 22. (12 分) 已知函数 ( ) ( 1)ln ( 0)axf x e x a   . (1) 当 a =1 时,求曲 线 y = f ( x ) 在(l , f (l ) )处的切线与两坐标轴围成的三角形的面积; (2) 若关于x的方程f(x) =ax2 ax 在[ 1 , +) 上恰有三个不同的实数解,求 a 的取值范围. 【云贵川桂四省2021 届高三联合考试数学 第 4 页( 共 4 页)理科】, • 21-09-66C•
查看更多

相关文章

您可能关注的文档