- 2021-06-16 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2018届一轮复习苏教版已知三角函数值求角教案
第三十六教时 教材:已知三角函数值求角(反正弦,反余弦函数) 目的:要求学生初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。 过程: 一、简单理解反正弦,反余弦函数的意义。 x y 0 由 1°在R上无反函数。§科§网] 2°在上, x与y是一一对应的,且区间比较简单 在上,的反函数称作反正弦函数, http://wx.jtyjy.com/ 记作,(奇函数)。 x y 0 同理,由 在上,的反函数称作反余弦函数, 记作 二、已知三角函数求角 首先应弄清:已知角求三角函数值是单值的。 已知三角函数值求角是多值的。 例一、1、已知,求x 解:在上正弦函数是单调递增的,且符合条件的角只有一个 ∴(即) 2、已知 解:,是第一或第二象限角。 即()。 3、已知 解:x是第三或第四象限角。 (即 或 ) 这里用到是奇函数。[来源: http://wx.jtyjy.com/] 例二、1、已知,求 解:在上余弦函数是单调递减的, 且符合条件的角只有一个 2、已知,且,求x的值。 解:,x是第二或第三象限角。 3、已知,求x的值。[来源:学&科&网Z&X&X&K] 解:由上题:。 介绍:∵[来源: http://wx.jtyjy.com/] ∴上题 例三、(见课本P74-P75)略。 三、小结:求角的多值性 法则:1、先决定角的象限。 2、如果函数值是正值,则先求出对应的锐角x; 如果函数值是负值,则先求出与其绝对值对应的锐角x, 3、由诱导公式,求出符合条件的其它象限的角。 四、作业:P76-77 练习 3 习题4.11 1,2,3,4中有关部分。 查看更多