- 2021-06-16 发布 |
- 37.5 KB |
- 25页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018届二轮复习(文)专题六统计与概率课件(全国通用)
专题六 统计与概率 6.1 统计与概率小题专项练 - 3 - 1 . 抽样方法与频率分布直方图 (1) 系统抽样又称 “ 等距 ” 抽样 , 被抽到的各个号码间隔相同 . (2 ) 总体 由差异明显的几部分组成时 , 适用于分层抽样 . (4) 在频率分布直方图中 , 小长方形的面积等于频率 , 各小长方形的面积的总和等于 1 . 2 . 方差与标准差 - 4 - 3 . 古典概型与几何概型的 概率 4 . 线性回归 方程 5 . 随机变量 - 5 - 一、选择题 二、填空题 1 . (2017 全国 Ⅰ , 文 2) 为评估一种农作物的种植效果 , 选了 n 块地作试验田 . 这 n 块地的亩产量 ( 单位 :kg) 分别为 x 1 , x 2 ,…, x n , 下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 ( B ) A .x 1 , x 2 ,…, x n 的平均数 B .x 1 , x 2 ,…, x n 的标准差 C .x 1 , x 2 ,…, x n 的最大值 D .x 1 , x 2 ,…, x n 的中位数 解析 : 标准差和方差可刻画样本数据的稳定程度 , 故选 B . 2 . (2017 河南郑州三模 , 文 2) 为了解 600 名学生的视力情况 , 采用系统抽样的方法 , 从中抽取容量为 20 的样本 , 则需要分成几个小组进行抽取 ?( B ) A . 20 B . 30 C . 40 D . 50 解析 : 根据系统抽样的特征 , 从 600 名学生中抽取 20 名学生 , 分段间隔 为 = 30 . 故选 B . - 6 - 一、选择题 二、填空题 3 . (2017 全国 Ⅲ , 文 3) 某城市为了解游客人数的变化规律 , 提高旅游服务质量 , 收集并整理了 2014 年 1 月至 2016 年 12 月期间月接待游客量 ( 单位 : 万人 ) 的数据 , 绘制了下面的折线图 . 根据该折线图 , 下列结论错误的是 ( A ) - 7 - 一、选择题 二、填空题 A. 月接待游客量逐月增加 B. 年接待游客量逐年增加 C. 各年的月接待游客量高峰期大致在 7,8 月 D. 各年 1 月至 6 月的月接待游客量相对于 7 月至 12 月 , 波动性更小 , 变化比较平稳 解析 : 由题图可知 2014 年 8 月到 9 月的月接待游客量在减少 , 故 A 错误 . - 8 - 一、选择题 二、填空题 4 . 某高校调查了 200 名学生每周的自习时间 ( 单位 : 小时 ), 制成了如图所示的频率分布直方图 , 其中自习时间的范围是 [17 . 5,30], 样本数据分组为 [17 . 5,20),[20,22 . 5),[22 . 5,25),[25,27 . 5),[27 . 5,30] . 根据直方图 , 这 200 名学生中每周的自习时间不少于 22 . 5 小时的人数是 ( D ) A.56 B.60 C.120 D.140 - 9 - 一、选择题 二、填空题 解析 : 由频率分布直方图可知 , 这 200 名学生每周自习时间不少于 22 . 5 小时的频率为 (0 . 16 + 0 . 08 + 0 . 04) × 2 . 5 = 0 . 7, 故该区间内的人数为 200 × 0 . 7 = 140 . 故选 D . - 10 - 一、选择题 二、填空题 5 . 某路口人行横道的信号灯为红灯和绿灯交替出现 , 红灯持续时间为 40 秒 . 若一名行人来到该路口遇到红灯 , 则至少需要等待 15 秒才出现绿灯的概率为 ( B ) 解析 : 因为红灯持续时间为 40 秒 , 故选 B . - 11 - 一、选择题 二、填空题 6 . (2017 全国 Ⅰ , 文 4 ) 如 图 , 正方形 ABCD 内的图形来自中国古代的太极图 . 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称 . 在正方形内随机取一点 , 则此点取自黑色部分的概率是 ( B ) - 12 - 一、选择题 二、填空题 解析 : 因为正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称 , 即关于内切圆的圆心成中心对称 , 所以黑色部分和白色部分各占圆的一半 . 设正方形的边长为 a , 则正方形的面积为 a 2 , 黑 故选 B . - 13 - 一、选择题 二、填空题 解析 : 令 A= “ 甲、乙下成和棋 ”, B= “ 甲获胜 ”, C= “ 甲输 ”, - 14 - 一、选择题 二、填空题 8 . 为美化环境 , 从红、黄、白、紫 4 种颜色的花中任选 2 种花种在一个花坛中 , 余下的 2 种花种在另一个花坛中 , 则红色和紫色的花不在同一花坛的概率是 ( C ) 解析 : 总的基本事件是 : 红黄 , 白紫 ; 红白 , 黄紫 ; 红紫 , 黄白 , 共 3 种 . 满足条件的基本事件是 : 红黄 , 白紫 ; 红白 , 黄紫 , 共 2 种 . 故所求事件的概率为 P = . - 15 - 一、选择题 二、填空题 9 . (2017 天津 , 文 3) 有 5 支彩笔 ( 除颜色外无差别 ), 颜色分别为红、黄、蓝、绿、紫 , 从这 5 支彩笔中任取 2 支不同颜色的彩笔 , 则取出的 2 支彩笔中含有红色彩笔的概率为 ( C ) 解析 : 从 5 支彩笔中任取 2 支不同颜色的彩笔 , 共有 ( 红黄 ),( 红蓝 ),( 红绿 ),( 红紫 ),( 黄蓝 ),( 黄绿 ),( 黄紫 ),( 蓝绿 ),( 蓝紫 ),( 绿紫 )10 种不同情况 , 记 “ 取出的 2 支彩笔中含有红色彩笔 ” 为事件 A , 则事件 A 包含 ( 红黄 ),( 红蓝 ),( 红绿 ),( 红紫 )4 个基本事件 , 则 P ( A ) = . 故选 C . - 16 - 一、选择题 二、填空题 10 . 小敏打开计算机时 , 忘记了开机密码的前两位 , 只记得第一位是 M,I,N 中的一个字母 , 第二位是 1,2,3,4,5 中的一个数字 , 则小敏输入一次密码能够成功开机的概率是 ( C ) 解析 : 密码的前两位共有 15 种可能 , 其中只有 1 种是正确的密码 , 因此所求概率 为 . 故选 C . - 17 - 一、选择题 二、填空题 11 . (2017 全国 Ⅱ , 文 11) 从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张 , 放回后再随机抽取 1 张 , 则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 ( D ) - 18 - 一、选择题 二、填空题 解析 : 由题意可得抽取两张卡片上的数的所有情况如下表所示 ( 表中点的横坐标表示第一次取到的数 , 纵坐标表示第二次取到的数 ): 总共 有 25 种情况 , 其中第一张卡片上的数大于第二张卡片上的数的 - 19 - 一、选择题 二、填空题 12 . (2017 湖北黄冈模拟 , 文 7) 已知数据 x 1 , x 2 , x 3 ,…, x n 是上海普通职工 n ( n ≥ 3, n ∈ N * ) 个人的年收入 , 设这 n 个数据的中位数为 x , 平均数为 y , 方差为 z , 如果再加上世界首富的年收入 x n+ 1 , 则这 n+ 1 个数据中 , 下列说法正确的是 ( B ) A . 年收入平均数大大增大 , 中位数一定变大 , 方差可能不变 B . 年收入平均数大大增大 , 中位数可能不变 , 方差变大 C . 年收入平均数大大增大 , 中位数可能不变 , 方差也不变 D . 年收入平均数可能不变 , 中位数可能不变 , 方差可能不变 - 20 - 一、选择题 二、填空题 解析 : ∵ 数据 x 1 , x 2 , x 3 , … , x n 是上海普通职工 n ( n ≥ 3, n ∈ N * ) 个人的年收入 , 而 x n+ 1 为世界首富的年收入 , 则 x n+ 1 会远大于 x 1 , x 2 , x 3 , … , x n , 故这 n+ 1 个数据中 , 年收入平均数大大增大 , 但中位数可能不变 , 也可能稍微变大 , 但由于数据的集中程度也受到 x n+ 1 比较大的影响 , 而更加离散 , 则方差变大 , 故选 B . - 21 - 一、选择题 二、填空题 13 . ( 2017 江苏 ,3) 某工厂生产甲、乙、丙、丁四种不同型号的产品 , 产量分别为 200,400,300,100 件 . 为检验产品的质量 , 现用分层抽样的方法从以上所有的产品中抽取 60 件进行检验 , 则应从丙种型号的产品中抽取 18 件 . - 22 - 一、选择题 二、填空题 14 . 将一颗质地均匀的骰子 ( 一种各个面上分别标有 1,2,3,4,5,6 个点的正方体玩具 ) 先后抛掷 2 次 , 则出现向上的点数之和小于 10 的概率是 . 解析 : ( 方法一 ) 将一颗质地均匀的骰子先后抛掷 2 次 , 共有 36 个基本事件 . 其中向上的点数之和小于 10 的基本事件共有 30 个 , 所以所求 ( 方法二 ) 将一颗质地均匀的骰子先后抛掷 2 次 , 共有 36 个基本事件 . - 23 - 一、选择题 二、填空题 15 . (2017 北京房山区一模 , 文 10) 古代科举制度始于隋而成于唐 , 完备于宋、元 . 明代则处于其发展的鼎盛阶段 . 其中表现之一为会试分南卷、北卷、中卷按比例录取 , 其录取比例为 11 ∶ 7 ∶ 2 . 若明宣德五年会试录取人数为 100, 则中卷录取人数为 10 . 解析 : 由题意 , 明宣德五年会试录取人数为 100, 则中卷录取人数 为 故答案为 10 . - 24 - 一、选择题 二、填空题 16 . (2017 宁夏银川一中二模 , 文 16) 已知实数 a , b 满足 0查看更多
相关文章
- 当前文档收益归属上传用户