- 2021-06-16 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018届高三数学(理)一轮复习函数方程与应用考点专练
板块命题点专练(三) 命题点一 基本初等函数(Ⅰ) 命题指数:☆☆☆☆☆ 难度:中、低 题型:选择题、填空题 1.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数 y=10lg x的定义域和值域相 同的是( ) A.y=x B.y=lg x C.y=2x D.y= 1 x 解析:选 D 函数 y=10lg x的定义域与值域均为(0,+∞). 函数 y=x的定义域与值域均为(-∞,+∞). 函数 y=lg x的定义域为(0,+∞),值域为(-∞,+∞). 函数 y=2x的定义域为(-∞,+∞),值域为(0,+∞). 函数 y= 1 x 的定义域与值域均为(0,+∞).故选 D. 2.(2016·全国丙卷)已知 a=24 3 ,b=42 5 ,c=251 3 ,则( ) A.b1 时,函数 f(x)=xa(x>0)单调递增,函数 g(x)=logax 单调递增,且 过点(1,0),由幂函数的图象性质可知 C错;当 00)单调递增,函 数 g(x)=logax单调递减,且过点(1,0),排除 A,又由幂函数的图象性质可知 B错,因此选 D. 5.(2015·山东高考)若函数 f(x)=2x+1 2x-a 是奇函数,则使 f(x)>3 成立的 x 的取值范围为 ( ) A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞) 解析:选 C 因为函数 y=f(x)为奇函数,所以 f(-x)=-f(x),即 2-x+1 2-x-a =- 2x+1 2x-a .化简 可得 a=1,则 2x+1 2x-1 >3,即 2x+1 2x-1 -3>0,即 2x+1-32x-1 2x-1 >0,故不等式可化为 2x-2 2x-1 <0,即 1<2x<2,解得 0查看更多