- 2021-06-15 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020_2021学年新教材高中数学第4章指数与对数4
4.2.2 对数的运算性质 学 习 目 标 核 心 素 养 1.掌握对数的运算性质,并能运用运算性质进行对数的有关运算.(重点) 2.了解换底公式. 3.能用换底公式将一般对数化成自然对数或常用对数.(难点) 通过学习本节内容,提升学生的数学运算和数学建模的核心素养. 回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s=ars(a>0,r,s∈Q).(3)(ab)r=arbr(a>0,b>0,r∈Q).那么对数有哪些性质?如loga(MN)=? 1.符号表示 如果a>0,a≠1,M>0,N>0,则 (1)loga(MN)=logaM+logaN; (2)loga=logaM-logaN; (3)logaMn=nlogaM(n∈R). 2.文字表述 (1)两正数的积的对数等于这两个正数的对数的和; (2)两正数的商的对数等于被除数的对数减去除数的对数; (3)一个正数的n次幂的对数等于n倍的该数的对数. 3.换底公式 一般地,我们有logaN=,(其中a>0,a≠1,N>0,c>0,c≠1),这个公式称为对数的换底公式. 4.与换底公式有关的几个结论 (1)loga b·logb a=1(a,b>0且a,b≠1); (2) =loga b(a,b>0且a,b≠1,m≠0). 1.思考辨析(正确的打“√”,错误的打“×”) (1)积、商的对数可以直接化为对数的和、差. ( ) - 9 - (2)logax·logay=loga(x+y). ( ) (3)loga(-2)4=4loga(-2). ( ) [提示] 根据对数的运算性质,只有正数积、商的对数才可以直接化为对数的和、差,(1)错误,(2)错误,(3)中-2不能作真数. [答案] (1)× (2)× (3)× 2.(1)log2 25-log2 = ;(2)log2 8= . (1)2 (2)3 [(1)log2 25-log2 =log2 25×=log2 4=log2 22=2log2 2=2. (2)log2 8=log2 23=3log2 2=3.] 3.若lg 5=a,lg 7=b,用a,b表示log75= . [log75==.] 对数运算性质的应用 【例1】 计算下列各式的值: (1)lg 2+lg 5;(2)log535+2log-log5 -log5 14; (3)[(1-log6 3)2+log6 2·log6 18]÷log6 4. [思路点拨] 根据对数的运算性质,先将式子转化为只含有一种或几种真数的形式再进行计算. [解] (1)lg 2+lg 5=lg (2×5)=lg 10=1. (2)原式=log5 +2log2=log5 53-1=2. (3)原式=[(log6 6-log6 3)2+log6 2·log6(2·32)]÷log6 4 =÷log6 22 =[(log6 2)2+(log6 2)2+2log6 2·log6 3]÷2log6 2 =log6 2+log6 3=log6(2·3)=1. 1.对于同底的对数的化简常用的方法 (1)“收”,将同底的两对数的和(差)收成积(商)的对数; (2)“拆”,将积(商)的对数拆成两对数的和(差). - 9 - 2.注意对数的性质的应用,如loga1=0,logaa=1,a=N. 3.化简的式子中有多重对数符号时,应自内向外逐层化简求值. 1.计算下列各式的值: (1)lg -lg +lg ; (2)lg 25+lg 8+lg 5×lg 20+(lg 2)2; (3)2log32-log3+log38-5. [解] (1)法一:原式=(5lg 2-2lg 7)-×lg 2+(2lg 7+lg 5) =lg 2-lg 7-2lg 2+lg 7+lg 5 =lg 2+lg 5=(lg 2+lg 5) =lg 10=. 法二:原式=lg -lg 4+lg 7 =lg =lg (·)=lg =. (2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3. (3)原式=2log32-(log332-log39)+3log32-3=2log32-5log32+2+3log32-3=-1. 【例2】 化简: (1)log2(28×82);(2)用lg 2和lg 3表示lg 24; (3)用loga x,loga y,loga z表示loga(xy2z). [思路点拨] 将需表示式子中的真数用已知的式子中的真数表示出来. [解] (1)log2(28×82)=log2[28×(23)2]=log2(28+3×2)=log2 214=14. (2)lg 24=lg (3×8)=lg 3+lg 8=lg 3+3lg 2. (3)loga(xy2z)=loga x+loga y2+loga z=loga x+2loga y-loga z. 1.这类问题一般有两种处理方法 - 9 - 一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值; 另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.要特别注意loga(MN)≠loga M·loga N,loga(M±N)≠loga M±loga N. 2.对数的运算性质的推广:=loga b(a,b>0且a,b≠1,m≠0). 2.化简: (1)log (45×82);(2)log 27-log 9; (3)用lg x,lg y,lg z表示lg . 换底公式及其应用 【例3】 (1)已知3a=5b=c,且+=2,则c的值为 . (2)已知x,y,z为正数,3x=4y=6z,2x=py. ①求p; ②证明:-=. [思路点拨] 用换底公式统一底数再求解. (1) [由3a=5b=c,得a=log3c,b=log5c,所以=logc3,=logc5.又+=2,所以logc3+logc5=2,即logc15=2,c=.] (2)[解] ①设3x=4y=6z=k(k>1),则x=log3k,y=log4k,z=log6k,由2x=py,得2log3k=plog4k, 解得p=2log34=4log32. ②证明:-=- - 9 - =logk6-logk3=logk2, 而==logk4=logk2. 故-=. 1.换底公式即将底数不同的对数转化成底数相同的对数,从而进行化简、计算或证明.换底公式应用时,一般换成以10为底的常用对数,或以e为底的自然对数,但也应该结合已知条件来确定. 2.换底公式推导出的两个恒等式: (1)=loga N; (2)loga b·logb a=1,要注意熟练应用. 3.计算:(log2 125+log4 25+log8 5)(log5 2+log25 4+log125 8). 对数运算在实际问题中的应用 【例4】 2019年我国国民生产总值为a亿元,如果年平均增长8%,那么经过多少年,我国国民生产总值是2019年的2倍?(已知lg 2≈0.301 0,lg 3≈0.477 1,lg 1.08≈0.033 4,精确到1年) [思路点拨] 认真分析题意,找出其中各量之间的关系,列出式子,并利用对数运算求解. [解] 设经过x年,我国国民生产总值是2019年的2倍. 经过1年,总产值为a(1+8%), 经过2年,总产值为a(1+8%)2, …… 经过x年,总产值为a(1+8%)x. 由题意得a(1+8%)x=2a,即1.08x=2, - 9 - 两边取常用对数,得lg 1.08x=lg 2, 则x=≈≈9(年). 答:约经过9年,国民生产总值是2019年的2倍. 解对数应用题的步骤 4.一种放射性物质不断变化为其他物质,每经过一年剩余的质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的(结果保留1位有效数字)?(lg 2≈0.301 0,lg 3≈0.477 1) [解] 假设经过x年,该物质的剩余量是原来的, 根据题意得:0.75x=, ∴x=log0.75 =-=-≈4. 故估计约经过4年,该物质的剩余量是原来的. 利用对数运算性质解简单的对数方程 [探究问题] 1.对数的运算性质有哪些? [提示] loga (MN)=loga M+loga N,loga =loga M-loga N,loga b=,loga Mn=nloga M,=loga b. 2.解对数方程loga M=loga N应注意什么? - 9 - [提示] 【例5】 已知lg x+lg y=2lg (x-2y),求log的值. [思路点拨] 根据对数的运算性质得到x,y的关系式,解方程即可. [解] lg x+lg y=lg (xy)=2lg (x-2y)=lg (x-2y)2, 由题知,xy=(x-2y)2,即x2-5xy+4y2=0, ∴-5+4=0, ∴=0,故=1或4. 又当x=y时,x-2y=-y<0,故舍去,∴=4. ∴log =log 4=-2. 解含对数式的方程应注意的两点 (1)对数的运算性质; (2)对数中底数和真数的范围限制. 1.换底公式可完成不同底数的对数式之间的转化,可正用、逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简. 2.运用对数的运算性质应注意: - 9 - (1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误: ①logaNn=(logaN)n;②loga(MN)=logaM·logaN;③logaM±logaN=loga(M±N). 1.若a>0,a≠1,x>0,y>0,则下列式子正确的是( ) A.logax+logay=loga(x+y) B.logax-logay=loga(x-y) C.loga=logax÷logay D.loga(xy)=logax+logay D [由对数的运算性质知D正确.] 2.已知lg 2=a,lg 7=b,那么用a,b表示log8 98= . [log8 98===.] 3.已知2m=5n=10,则+= . 1 [因为m=log2 10,n=log5 10,所以+=lg 2+lg 5=lg 10=1.] 4.若a,b是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(logab+logba)的值. [解] 原方程可化为:2(lg x)2-4lg x+1=0. 设lg x=t,即原方程为2t2-4t+1=0. 所以t1+t2=2,t1·t2=. 又因为a,b是方程2(lg x)2-lg x4+1=0的两个实根, 则lg a=t1,lg b=t2,即lg a+lg b=2, lg a·lg b=. lg(ab)·(logab+logba) =(lg a+lg b)· =(lg a+lg b)· =2×=12, 即lg(ab)·(logab+logba)=12. - 9 - - 9 -查看更多