- 2021-06-15 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020届二轮复习函数基础知识及注意点学案(全国通用)
函数一章基础知识 一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 如:若,;问:到的映射有 个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。 函数的图象与直线交点的个数为 个。 二、函数的三要素: , , 。 相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法: (2)函数定义域的求法: ①,则 ; ②则 ; ③,则 ; ④如:,则 ; ⑤含参问题的定义域要分类讨论; 如:已知函数的定义域是,求的定义域。 ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为,扇形面积为,则 ;定义域为 。 (3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式; ②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 求下列函数的值域:①(2种方法); ②(2种方法);③(2种方法); 三、函数的性质: 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。 判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。 其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。 常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换 y=f(x)→y=f(x+a),y=f(x)+b 注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。 (ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。 对称变换 y=f(x)→y=f(-x),关于y轴对称 y=f(x)→y=-f(x) ,关于x轴对称 y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称 y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数) 伸缩变换:y=f(x)→y=f(ωx), y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。 一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; x O y y=f(x) (2,0) (0,-1) 如:的图象如图,作出下列函数图象: (1);(2); (3);(4); (5);(6); (7);(8); (9)。 五、反函数: (1)定义: (2)函数存在反函数的条件: ; (3)互为反函数的定义域与值域的关系: ; (4)求反函数的步骤:①将看成关于的方程,解出,若有两解,要注意解的选择;② 将互换,得;③写出反函数的定义域(即的值域)。 (5)互为反函数的图象间的关系: ; (6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。 如:求下列函数的反函数:;; 七、常用的初等函数: (1)一元一次函数:,当时,是增函数;当时,是减函数; (2)一元二次函数: 一般式:;对称轴方程是 ;顶点为 ; 两点式:;对称轴方程是 ;与轴的交点为 ; 顶点式:;对称轴方程是 ;顶点为 ; ①一元二次函数的单调性: 当时: 为增函数; 为减函数;当时: 为增函数; 为减函数; ②二次函数求最值问题:首先要采用配方法,化为的形式, Ⅰ、若顶点的横坐标在给定的区间上,则 时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得; 时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得; Ⅱ、若顶点的横坐标不在给定的区间上,则 时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得; 时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得; 有三个类型题型: (1)顶点固定,区间也固定。如: (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。 (3)顶点固定,区间变动,这时要讨论区间中的参数. ③二次方程实数根的分布问题: 设实系数一元二次方程的两根为;则: 根的情况 等价命题 在区间上有两根 在区间上有两根 在区间或上有一根 充要条件 注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。 (3)反比例函数: (4)指数函数: 指数运算法则: ; ; 。 指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0查看更多
- 当前文档收益归属上传用户