- 2021-06-15 发布 |
- 37.5 KB |
- 21页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2019届一轮复习人教A版推理与证明学案
1. 【2017课标II,理7】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。看后甲对大家说:我还是不知道我的成绩。根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 【答案】D 【考点】合情推理 【名师点睛】合情推理主要包括归纳推理和类比推理。数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向。合情推理仅是“合乎情理”的推理,它得到的结论不一定正确。而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下)。 2. 【2016高考新课标2理数】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . 【答案】1和3 【解析】 试题分析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 考点: 逻辑推理. 【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式. 3. 【2015高考北京,理20】已知数列满足:,,且. 记集合. (Ⅰ)若,写出集合的所有元素; (Ⅱ)若集合存在一个元素是3的倍数,证明:的所有元素都是3的倍数; (Ⅲ)求集合的元素个数的最大值. 【答案】(1),(2)证明见解析,(3)8 (Ⅲ)由于中的元素都不超过36,由,易得,类似可得,其次中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由的定义可知,第三个数及后面的数必定是4的倍数,另外,M中的数除以9的余数,由定义可知,和除以9的余数一样, ①若中有3的倍数,由(2)知:所有的都是3的倍数,所以都是3的倍数,所以除以9的余数为为3,6,3,6,...... ,或6,3,6,3......,或0,0,0,...... ,而除以9余3且是4的倍数只有12,除以9余6且是4的倍数只有24,除以9余0且是4的倍数只有36,则M中的数从第三项起最多2项,加上前面两项,最多4项. ②中没有3的倍数,则都不是3的倍数,对于除以9的余数只能是1,4,7,2,5,8中的一个,从起,除以9的余数是1,2,4,8,7,5,1,2,4,8,...... ,不断的6项循环(可能从2,4,8,7或5开始),而除以9的余数是1,2,4,8,5且是4的倍数(不大于36),只有28,20,4,8,16,32,所以M中的项加上前两项最多8项,则时,,项数为8,所以集合的元素个数的最大值为8. 考点定位:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析. 【名师点睛】本题考查数列的有关知识及归纳法证明方法,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二、三两步难度较大,适合选拔优秀学生. 考点 了解A 掌握B 灵活运用C 合情推理与演绎推理 B 分析法与综合法 A 反证法 A 数学归纳法的原理 A 数学归纳法的简单应用 B 合情推理在近年来的高考中,考查频率逐渐增大,题型多为选择、填空题,难度为中档. 解决此类问题的注意事项与常用方法: (1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳. (2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题. 高考对直接证明与间接证明主要以导数及其应用、不等式为载体进行考查,考查基本方法,体会数学证明的思想过程及其特点,提升分析、解决问题的能力。 数学归纳法的考查以解答题为主,一般会与数列、不等式证明等内容相结合,考查分析及推理论证能力,试题难度较大。 1.合情推理 (1)归纳推理 ①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳). ②特点:由部分到整体、由个别到一般的推理. (2)类比推理 ①定义:由两类对象具有某些类似特征 和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比). ②特点:由特殊到特殊的推理. (3)合情推理 归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理. 2.演绎推理 (1)演绎推理 从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况做出的判断. 3.直接证明 (1)综合法 ①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. ②框图表示:―→―→―→…―→ (其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论). ③思维过程:由因导果. (2)分析法 ①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. ②框图表示:―→―→―→…―→ (其中Q表示要证明的结论). ③思维过程:执果索因. 4.间接证明 反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法. 5.数学归纳法 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N )时命题成立; (2)(归纳递推)假设n= ( ≥n0, ∈N )时命题成立,证明当n= +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立. 题型一 合情推理与演绎推理 典例1 (2017·大连调研)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( ) A.21 B.34 C.52 D.55 【答案】 D 解题技巧与方法总结 归纳推理问题的常见类型及解题策略 (1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可. (4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性. 【变式训练】观察下列等式: 1-=, 1-+-=+, 1-+-+-=++, … 据此规律,第n个等式可为_________________________________________________________ _______________. 【答案】++…+. 【解析】 等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n个等式左边有2n项且正负交错,应为1-+-+…+- ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n个有n项,且由前几个的规律不难发现第n个等式右边应为++…+. 典例2 (1)(2017·西安月考)对于命题:如果O是线段AB上一点,则||+||=0;将它类比到平面的情形是:若O是△ABC内一点,有S△OBC·+S△OCA·+S△OBA·=0;将它类比到空间的情形应该是:若O是四面体ABCD内一点,则有________. (2)求 的值时,采用了如下方法:令 =x,则有x=,解得x=(负值已舍去).可用类比的方法,求得1+的值为________. 【答案】 (1)VO-BCD·+VO-ACD·+VO-ABD·+VO-ABC·=0 (2) 解题技巧与方法总结 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等. 【变式训练】在平面上,设ha,hb,hc是三角形ABC三条边上的高,P为三角形内任一点,P到相应三边的距离分别为Pa,Pb,Pc,我们可以得到结论:++=1.把它类比到空间,则三棱锥中的类似结论为______________________. 【答案】 +++=1 【解析】 设ha,hb,hc,hd分别是三棱锥A-BCD四个面上的高,P为三棱锥A-BCD内任一点,P到相应四个面的距离分别为Pa,Pb,Pc,Pd,于是可以得出结论:+++=1. 典例3 设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=a-4n-1,n∈N ,且a2,a5,a14构成等比数列. (1)证明:a2=; (2)求数列{an}的通项公式; (3)证明:对一切正整数n,有++…+<. 【答案】见解析 解题技巧与方法总结 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提. 【变式训练】(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 (2)(2016·洛阳模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是( ) A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数 B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数 C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数 D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数 【答案】 (1)C (2)B 题型二 直接证明与间接证明 典例4(2016·重庆模拟)设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ac≤; (2)++≥1. 【答案】见解析 【解析】证明 (1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac, 得a2+b2+c2≥ab+bc+ca, 由题设得(a+b+c)2=1, 即a2+b2+c2+2ab+2bc+2ca=1. 所以3(ab+bc+ca)≤1,即ab+bc+ca≤. (2)因为+b≥2a,+c≥2b,+a≥2c, 故+++(a+b+c)≥2(a+b+c), 即++≥a+b+c. 所以++≥1. 解题技巧与方法总结 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理. 【变式训练】 对于定义域为[0,1]的函数f(x),如果同时满足: ①对任意的x∈[0,1],总有f(x)≥0; ②f(1)=1; ③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数. (1)若函数f(x)为理想函数,证明:f(0)=0; (2)试判断函数f(x)=2x(x∈[0,1]),f(x)=x2(x∈[0,1]),f(x)=(x∈[0,1])是不是理想函数. 【答案】见解析 典例5已知函数f(x)=tan x,x∈,若x1,x2∈,且x1≠x2,求证:[f(x1)+f(x2)]>f. 【答案】见解析 【证明】 要证[f(x1)+f(x2)]>f, 即证明(tan x1+tan x2)>tan , 只需证明>tan , 只需证明>. 由于x1,x2∈,故x1+x2∈(0,π). 所以cos x1cos x2>0,sin(x1+x2)>0,1+cos(x1+x2)>0, 故只需证明1+cos(x1+x2)>2cos x1cos x2, 即证1+cos x1cos x2-sin x1sin x2>2cos x1cos x2, 即证cos(x1-x2)<1. 由x1,x2∈,x1≠x2知上式显然成立, 因此[f(x1)+f(x2)]>f. 引申探究 若本例中f(x)变为f(x)=3x-2x,试证:对于任意的x1,x2∈R,均有≥f. 【答案】见解析 解题技巧与方法总结 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证. 【变式训练】(2017·重庆月考)设a>0,b>0,2c>a+b,求证: (1)c2>ab; (2)c- 0,b>0,2c>a+b≥2, ∴c>,平方得c2>ab. (2)要证c- 0)的图象与x轴有两个不同的交点,若f(c)=0,且0查看更多