【数学】2019届一轮复习(文)人教A版推理与证明、算法、复数第1节学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2019届一轮复习(文)人教A版推理与证明、算法、复数第1节学案

第1节 合情推理与演绎推理 最新考纲 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.‎ 知 识 梳 理 ‎1.合情推理 类型 定义 特点 归纳推理 根据一类事物的部分对象具有某种性质,推出这类事物的全部对象都具有这种性质的推理 由部分到整体、由个别到一般 类比推理 根据两类事物之间具有某些类似(一致)性,推测一类事物具有另一类事物类似(或相同)的性质的推理 由特殊到特殊 ‎2.演绎推理 ‎(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.‎ ‎(2)“三段论”是演绎推理的一般模式,包括:‎ ‎①大前提——已知的一般原理;‎ ‎②小前提——所研究的特殊情况;‎ ‎③结论——根据一般原理,对特殊情况作出的判断.‎ 诊 断 自 测 ‎1.思考辨析(在括号内打“√”或“×”)‎ ‎(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(  )‎ ‎(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(  )‎ ‎(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(  )‎ ‎(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(  )‎ 解析 (1)类比推理的结论不一定正确.‎ ‎(3)平面中的三角形与空间中的四面体作为类比对象较为合适.‎ ‎(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确.‎ 答案 (1)× (2)√ (3)× (4)×‎ ‎2.数列2,5,11,20,x,47,…中的x等于(  )‎ A.28 B.32 C.33 D.27‎ 解析 5-2=3,11-5=6,20-11=9,‎ 推出x-20=12,所以x=32.‎ 答案 B ‎3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理(  )‎ A.结论正确 B.大前提不正确 C.小前提不正确 D.全不正确 解析 f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.‎ 答案 C ‎4.(2018·咸阳模拟)观察下列式子:<2,+<,++<8,+++<,…,根据以上规律,第n(n∈N )个不等式是 .‎ 解析 根据所给不等式可得第n个不等式是++…+<.‎ 答案 ++…+< ‎5.(选修1-2P35A6改编)在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N )成立,类比上述性质,在等比数列{bn}中,若b9=1,则b1b2b3…bn= .‎ 答案 b1b2b3…b17-n(n<17,n∈N )‎ 考点一 归纳推理 ‎【例1】 (1)(2018·佛山一模)所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数(也称为完备数、完美数),如6=1+2+3;28=1+2+4+7+14;496=1+2+4+8+16+31+62+124+248,…,此外,它们都可以表示为2的一些连续正整数次幂之和,如6=21+22,28=22+23+24,…,按此规律,8 128可表示为 .‎ ‎(2)(2018·济宁模拟)已知ai>0(i=1,2,3,…,n),观察下列不等式:‎ ≥;‎ ≥;‎ ≥;‎ ‎……‎ 照此规律,当n∈N ,n≥2时,≥ .‎ 解析 (1)由题意,如果2n-1是质数,则2n-1(2n-1)是完全数,例如:6=21+22=21(22-1),28=22+23+24=22(23-1),…;若2n-1(2n-1)=8 128,解得n=7,所以8 128可表示为26(27-1)=26+27+…+212.‎ ‎(2)根据题意有≥(n∈N ,n≥2).‎ 答案 (1)26+27+…+212 (2) 规律方法 归纳推理问题的常见类型及解题策略 ‎(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.‎ ‎(2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.‎ ‎(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.‎ ‎(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.‎ ‎【训练1】 (1)(2018·郑州一模)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:‎ 他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,故将其称为三角形数,由以上规律,知这些三角形数从小到大形成一个数列{an},那么a10的值为(  )‎ A.45 B.55 C.65 D.66‎ ‎(2)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为=n2+n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:‎ 三角形数   N(n,3)=n2+n,‎ 正方形数 N(n,4)=n2,‎ 五边形数 N(n,5)=n2-n,‎ 六边形数 N(n,6)=2n2-n ‎……‎ 可以推测N(n,k)的表达式,由此计算N(10,24)= .‎ 解析 (1)第1个图中,小石子有1个,‎ 第2个图中,小石子有3=1+2个,‎ 第3个图中,小石子有6=1+2+3个,‎ 第4个图中,小石子有10=1+2+3+4个,‎ ‎……‎ 故第10个图中,小石子有1+2+3+…+10==55个,即a10=55.‎ ‎(2)三角形数 N(n,3)=n2+n=,‎ 正方形数 N(n,4)=n2=,‎ 五边形数 N(n,5)=n2-n=,‎ 六边形数 N(n,6)=2n2-n=,‎ k边形数 N(n,k)=,‎ 所以N(10,24)===1 000.‎ 答案 (1)B (2)1 000‎ 考点二 类比推理 ‎【例2】 (1)(一题多解)若数列{an}是等差数列,则数列{bn}也为等差数列.类比这一性质可知,若正项数列{cn}是等比数列,且{dn}也是等比数列,则dn的表达式应为(  )‎ A.dn= B.dn= C.dn= D.dn= ‎(2)(2018·湖北八校联考)祖暅是我国南北朝时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆+=1(a>b>0)所围成的平面图形绕y轴旋转一周后,得一橄榄状的几何体(称为椭球体)(如图),课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于 .‎ 解析 (1)法一 从商类比开方,从和类比积,则算术平均数可以类比几何平均数,故dn的表达式为dn=.‎ 法二 若{an}是等差数列,则a1+a2+…+an=na1+d,∴bn=a1+d=n+a1-,即{bn}为等差数列;若{cn}是等比数列,则c1·c2·…·cn=c·q1+2+…+(n-1)=c·q,∴dn==c1·q,即{dn}为等比数列,故选D.‎ ‎(2)椭圆的长半轴长为a,短半轴长为b,现构造两个底面半径为b,高为a的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球体的体积V=2(V圆柱-V圆锥)=2=πb2a.‎ 答案 (1)D (2)πb2a 规律方法 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.‎ ‎2.类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等. ‎ ‎【训练2】 (1)(2017·安徽江南十校联考)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程=x确定出来x=2,类似地不难得到1+=(  )‎ A. B. C. D. ‎(2)如图(1)所示,点O是△ABC内任意一点,连接AO,BO,CO,并延长交对边于A1,B1,C1,则++=1,类比猜想:点O是空间四面体VBCD内的任意一点,如图(2)所示,连接VO,BO,CO,DO并延长分别交面BCD,VCD,VBD,VBC于点V1,B1,C1,D1,则有 .‎ 解析 (1)令1+=x(x>0),即1+=x,即x2-x-1=0,解得x=(x=舍),故1+=,故选C.‎ ‎(2)利用类比推理,猜想应有+++=1.‎ 用“体积法”证明如下:‎ +++=+++==1.‎ 答案 (1)C (2)+++=1‎ 考点三 演绎推理 ‎【例3】 数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n∈N ).证明:‎ ‎(1)数列是等比数列;‎ ‎(2)Sn+1=4an.‎ 证明 (1)∵an+1=Sn+1-Sn,an+1=Sn,‎ ‎∴(n+2)Sn=n(Sn+1-Sn),‎ 即nSn+1=2(n+1)Sn.‎ ‎∴=2·,又=1≠0,(小前提)‎ 故是以1为首项,2为公比的等比数列.(结论)‎ ‎(大前提是等比数列的定义,这里省略了)‎ ‎(2)由(1)可知=4·(n≥2),‎ ‎∴Sn+1=4(n+1)·=4··Sn-1‎ ‎=4an(n≥2),(小前提)‎ 又a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)‎ ‎∴对于任意正整数n,都有Sn+1=4an.(结论)‎ ‎(第(2)问的大前提是第(1)问的结论以及题中的已知条件)‎ 规律方法 演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.‎ ‎【训练3】 (2017·全国Ⅱ卷)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则(  )‎ A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 解析 由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩、丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.‎ 答案 D 基础巩固题组 ‎(建议用时:30分钟)‎ 一、选择题 ‎1.观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第(  )‎ A.22项 B.23项 C.24项 D.25项 解析 两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5为和为8的第3项,所以为第24项,故选C.‎ 答案 C ‎2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是(  )‎ A.使用了归纳推理 B.使用了类比推理 C.使用了“三段论”,但推理形式错误 D.使用了“三段论”,但小前提错误 解析 由“三段论”的推理方式可知,该推理的错误原因是推理形式错误.‎ 答案 C ‎3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=(  )‎ A.f(x) B.-f(x) C.g(x) D.-g(x)‎ 解析 由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).‎ 答案 D ‎4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于(  )‎ A.28 B.76 C.123 D.199‎ 解析 观察规律,归纳推理.‎ 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.‎ 答案 C ‎5.由代数式的乘法法则类比推导向量的数量积的运算法则:‎ ‎①“mn=nm”类比得到“a·b=b·a”;‎ ‎②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;‎ ‎③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;‎ ‎④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;‎ ‎⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;‎ ‎⑥“=”类比得到“=”.‎ 以上式子中,类比得到的结论正确的个数是(  )‎ A.1 B.2 C.3 D.4‎ 解析 ①②正确;③④⑤⑥错误.‎ 答案 B ‎6.(2017·宜昌一中月考)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:‎ 甲说:“我们四人都没考好”;‎ 乙说:“我们四人中有人考的好”;‎ 丙说:“乙和丁至少有一人没考好”;‎ 丁说:“我没考好”.‎ 结果,四名学生中有两人说对了,则四名学生中说对的两人是(  )‎ A.甲,丙 B.乙,丁 C.丙,丁 D.乙,丙 解析 甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为D.‎ 答案 D ‎7.(2018·郑州调研)平面内凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,以此类推,凸13边形对角线的条数为(  )‎ A.42 B.65 C.143 D.169‎ 解析 可以通过列表归纳分析得到.‎ 凸多边形 ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎…‎ 对角线条数 ‎2‎ ‎2+3‎ ‎2+3+4‎ ‎2+3+4+5‎ ‎2+3+4+5+6‎ ‎…‎ ‎∴凸13边形有2+3+4+…+11==65条对角线.‎ 答案 B ‎8.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为(  )‎ A.6 B.7 C.8 D.9‎ 解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n(n≥2,n∈N )层的点数为6(n-1).设一个点阵有n(n≥2,n∈N )层,则共有的点数为1+6+6×2+…+6(n-1)=1+×(n-1)=3n2-3n+1,由题意得3n2-3n+1=169,即(n+7)·(n-8)=0,所以n=8,故共有8层.‎ 答案 C 二、填空题 ‎9.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●…,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是 .‎ 解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|…,‎ 则前n组两种圈的总数是f(n)=2+3+4+…+(n+1)=,易知f(14)=119,f(15)=135,故n=14.‎ 答案 14‎ ‎10.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n个等式为 .‎ 解析 观察所给等式左右两边的构成易得第n个等式为13+23+…+n3==.‎ 答案 13+23+…+n3= ‎11.(2018·重庆模拟)在等差数列{an}中,若公差为d,且a1=d,那么有am+an=‎ am+n,类比上述性质,写出在等比数列{an}中类似的性质: .‎ 解析 等差数列中两项之和类比等比数列中两项之积,故在等比数列中,类似的性质是“在等比数列{an}中,若公比为q,且a1=q,则am·an=am+n.”‎ 答案 在等比数列{an}中,若公比为q,且a1=q,则am·an=am+n ‎12.已知点A(x1,ax1),B(x2,ax2)是函数y=ax(a>1)的图象上任意不同两点,依据图象可知,线段AB总是位于A,B两点之间函数图象的上方,因此有结论>a成立.运用类比思想方法可知,若点A(x1,sin x1),B(x2,sin x2)是函数y=sin x(x∈(0,π))的图象上任意不同两点,则类似地有 成立.‎ 解析 对于函数y=ax(a>1)的图象上任意不同两点A,‎ B,依据图象可知,线段AB总是位于A,B两点之间函数图象的上方,因此有结论>a成立;对于函数y=sin x(x∈(0,π))的图象上任意不同的两点A(x1,sin x1),B(x2,sin x2),线段AB总是位于A,B两点之间函数图象的下方,‎ 类比可知应有<sin 成立.‎ 答案 <sin 能力提升题组 ‎(建议用时:15分钟)‎ ‎13.(2017·湖北八校二联)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是(  )‎ A.甲 B.乙 C.丙 D.丁 解析 根据题意,6名选手比赛结果甲、乙、丙、丁猜测如下表:‎ ‎1号 ‎2号 ‎3号 ‎4号 ‎5号 ‎6号 甲 不可能 不可能 不可能 可能 可能 不可能 乙 可能 可能 不可能 可能 可能 可能 丙 可能 可能 不可能 不可能 不可能 可能 丁 可能 可能 可能 不可能 不可能 不可能 由表知,只有丁猜对了比赛结果,故选D.‎ 答案 D ‎14.(2018·南昌调研)设等比数列{an}的公比为q,其前n项和为Sn,前n项之积为 Tn,并且满足条件:a1>1,a2 016a2 017>1,<0,下列结论中正确的是(  )‎ A.q<0‎ B.a2 016a2 018-1>0‎ C.T2 016是数列{Tn}中的最大项 D.S2 016>S2 017‎ 解析 由a1>1,a2 016a2 017>1得q>0,由<0,a1>1得a2 016>1,a2 017<1,0b>0)外,过P0作椭圆的两条切线的切点为P1,P2,则切点弦P1P2所在的直线方程是+=1,那么对于双曲线则有如下命题:若P0(x0,y0)在双曲线-=1(a>0,b>0)外,过P0作双曲线的两条切线,切点为P1,P2,则切点弦P1P2所在直线的方程是 .‎ 解析 设P1(x1,y1),P2(x2,y2),‎ 则P1,P2的切线方程分别是-=1,-=1.‎ 因为P0(x0,y0)在这两条切线上,‎ 故有-=1,-=1,‎ 这说明P1(x1,y1),P2(x2,y2)在直线-=1上,‎ 故切点弦P1P2所在的直线方程是-=1.‎ 答案 -=1‎ ‎16.(2017·北京卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:‎ ‎(1)男学生人数多于女学生人数;‎ ‎(2)女学生人数多于教师人数;‎ ‎(3)教师人数的两倍多于男学生人数.‎ ‎①若教师人数为4,则女学生人数的最大值为 .‎ ‎②该小组人数的最小值为 .‎ 解析 设男学生人数为x,女学生人数为y,教师人数为 ,由已知得且x,y, 均为正整数.‎ ‎①当 =4时,8>x>y>4,∴x的最大值为7,y的最大值为6,故女学生人数的最大值为6.‎ ‎②x>y> >,当x=3时,条件不成立,当x=4时,条件不成立,当x=5时,5>y> >,此时 =3,y=4.‎ ‎∴该小组人数的最小值为12.‎ 答案 ①6 ②12‎
查看更多

相关文章

您可能关注的文档