- 2021-06-15 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020届高考数学一轮复习(理·新人教A版)单元检测九B解析几何提升卷单元检测
单元检测九(B) 解析几何(提升卷) 考生注意: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上. 3.本次考试时间100分钟,满分130分. 4.请在密封线内作答,保持试卷清洁完整. 第Ⅰ卷(选择题 共60分) 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知过点P(-2,m),Q(m,6)的直线的倾斜角为45°,则m的值为( ) A.1B.2C.3D.4 答案 B 解析 由题意可知:tan45°=,即=1,故m-6=-2-m,解得m=2. 2.直线kx-y-3k+3=0过定点( ) A.(3,0) B.(3,3) C.(1,3) D.(0,3) 答案 B 解析 kx-y-3k+3=0可化为y-3=k(x-3),所以过定点(3,3).故选B. 3.直线(a-1)x+y-a-3=0(a>1),当此直线在x,y轴的截距和最小时,实数a的值是( ) A.1B.C.2D.3 答案 D 解析 当x=0时,y=a+3,当y=0时,x=,令t=a+3+,因为a>1,所以t>5,且a2+(3-t)a+t=0,则Δ=(3-t)2-4t≥0,解得t≥9或t≤1(舍去),所以t的最小值为9,把t=9代入上述方程解得a=3. 4.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( ) A.B.2C.1D.3 答案 A 解析 圆的圆心为(3,0),r=1,圆心到直线x-y+1=0的距离为d==2,所以由勾股定理可知切线长的最小值为=. 5.一束光线从点A(-1,1)发出,并经过x轴反射,到达圆(x-2)2+(y-3)2=1上一点的最短路程是( ) A.4B.5C.3-1D.2 答案 A 解析 依题意可得,点A关于x轴的对称点A1(-1,-1),圆心C(2,3),A1C的距离为=5,所以到圆上的最短距离为5-1=4,故选A. 6.已知直线x+y=a与圆x2+y2=4交于A,B两点,且|+|=|-|,其中O为原点,则实数a的值为( ) A.2B.-2C.2或-2D.或- 答案 C 解析 由|+|=|-|得|+|2=|-|2,化简得·=0,即⊥,三角形AOB为等腰直角三角形,圆心到直线的距离为,即=,a=±2. 7.点P(2,-1)为圆(x-3)2+y2=25的弦的中点,则该弦所在直线的方程是( ) A.x+y+1=0 B.x+y-1=0 C.x-y-1=0 D.x-y+1=0 答案 B 解析 点P(2,-1)为圆(x-3)2+y2=25的弦的中点,设圆心为C(3,0),则该弦所在直线与PC垂直,故弦的斜率为k=-=-=-1,则由直线的点斜式可得弦所在直线的方程为y-(-1)=-1×(x-2),即x+y-1=0. 8.已知直线y=ax与圆C:(x-a)2+(y-1)2=a2-1交于A,B两点,且∠ACB=60°,则圆的面积为( ) A.6πB.36πC.7πD.49π 答案 A 解析 由题意可得圆心C(a,1),半径R=(a≠±1), ∵直线y=ax和圆C相交,△ABC为等边三角形, ∴圆心C到直线ax-y=0的距离为 Rsin60°=×, 即d==,解得a2=7, ∴圆C的面积为πR2=π(7-1)=6π. 故选A. 9.已知椭圆+=1的离心率e=,则m的值为( ) A.3 B.或3 C. D.或 答案 B 解析 当m>5时,a2=m,b2=5,c2=m-5,e2==,解得m=; 当0<m<5时,a2=5,b2=m,c2=5-m,e2==,解得m=3. 故选B. 10.(2018·哈尔滨师范大学附属中学模拟)已知点F1,F2分别是双曲线C:-=1 (a>0,b>0 )的左、右焦点,O为坐标原点,点P在双曲线C的右支上,|F1F2|=2|OP|,△PF1F2的面积为4,且该双曲线的两条渐近线互相垂直,则双曲线C的方程为( ) A.-=1 B.-=1 C.-=1 D.-=1 答案 B 解析 根据题意,|F1F2|=2|OP|,得∠F1PF2=, 根据焦点三角形面积公式可得S△F1PF2==4, 解得b2=4, 又因为该双曲线的两条渐近线互相垂直,可知该双曲线是等轴双曲线, 所以双曲线的方程为-=1,故选B. 11.已知直线l:kx-y-2k+1=0与椭圆C1:+=1(a>b>0)交于A,B两点,与圆C2:(x-2)2+(y-1)2=1交于C,D两点.若存在k∈[-2,-1],使得=,则椭圆C1的离心率的取值范围是( ) A. B. C. D. 答案 C 解析 直线l过圆C2的圆心,∵=, ∴||=||, ∴C2的圆心为A,B两点的中点. 设A(x1,y1),B(x2,y2), 则两式相减得, =-, 化简可得-2·=k,又∵a>b,∴=-∈, 所以e=∈. 12.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1与e2满足的关系是( ) A.+=2 B.-=2 C.e1+e2=2 D.e2-e1=2 答案 B 解析 由椭圆与双曲线的定义得e1=,e2=,所以-==2,故选B. 第Ⅱ卷(非选择题 共70分) 二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=________. 答案 2 解析 设A(x0,y0),由抛物线定义知x0+1=2, ∴x0=1,则直线AB⊥x轴,∴|BF|=|AF|=2. 14.已知平面直角坐标系内定点A(-1,0),B(1,0),M(4,0),N(0,4)和动点P(x1,y1),Q(x2,y2),若·=1,=+,其中O为坐标原点,则||的最小值是________. 答案 解析 ∵定点A(-1,0),B(1,0),动点P(x1,y1), ·=1, ∴(x1+1,y1)·(x1-1,y1)=1, ∴x+y=2, ∴P的轨迹是个半径为、圆心在原点的圆. ∵=+, ∴Q,M,N三点共线, ∵M(4,0),N(0,4), ∴Q的轨迹方程为直线MN:x+y-4=0, ∴||的最小值是圆心到直线的距离减去半径, 即-=. 15.(2018·河南新乡高三模拟)已知抛物线C:x2=2py(p>0)的焦点为F,O为坐标原点,点M,N,射线MO,NO分别交抛物线C于异于点O的点A,B,若A,B,F三点共线,则p的值为________. 答案 2 解析 直线OM的方程为y=-x,将其代入x2=2py, 解方程可得故A. 直线ON的方程为y=x,将其代入x2=2py, 解方程可得故B. 又F,所以kAB=,kBF=, 因为A,B,F三点共线,所以kAB=kBF,即=,解得p=2. 16.已知A,B分别为椭圆C:+=1(a>b>0)的左、右顶点,两不同点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当+++ln|m|+ln|n|取最小值时,椭圆C的离心率为________. 答案 解析 设点P(x0,y0),则+=1,所以mn=,从而+++ln|m|+ln|n|=+++ln,设=x,令f(x)=+lnx(0查看更多