- 2021-06-15 发布 |
- 37.5 KB |
- 15页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018届二轮复习函数的单调性与最值学案(全国通用)
1.利用函数的单调性求单调区间,比较大小,解不等式; 2.利用函数单调性求最值和参数的取值范围; 3.与导数交汇命题,以解答题形式考查. 1.函数单调性的定义 增函数 减函数 定义 设函数y=f(x)的定义域为A,区间M⊆A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当[来源:学_科_网][来源:学#科#网Z#X#X#K] Δy=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数 Δy=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数 图象 自左向右看图象是上升的 自左向右看图象是下降的 2.单调性与单调区间 如果一个函数在某个区间M上是增函数或是减函数就说这个函数在这个区间M上具有单调性,区间M称为单调区间. 【特别提醒】 1.函数的单调性是局部性质 函数的单调性,从定义上看,是指函数在定义域的某个子区间上的单调性,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等; 如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. 3.单调区间的表示 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 高频考点一 确定函数的单调性(区间) 例1、(1)函数f(x)=log(x2-4)的单调递增区间为( ) A.(0,+∞) B.(-∞,0) C.(2,+∞) D.(-∞,-2) (2)试讨论函数f(x)=(a≠0)在(-1,1)上的单调性. 【答案】D (2)【解析】法一 设-1查看更多