2021高考数学一轮复习课时作业14导数与函数的单调性理
课时作业14 导数与函数的单调性
[基础达标]
一、选择题
1.[2020·厦门质检]函数y=x2-ln x的单调递减区间为( )
A.(0,1) B.(0,1]
C.(1,+∞) D.(0,2)
解析:由题意知,函数的定义域为(0,+∞),又由y′=x-≤0,解得0
0时,-12;③f′(x)=0时,x=-1或x=2.
则函数f(x)的大致图象是( )
解析:根据信息知,函数f(x)在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.
答案:C
3.[2020·南昌模拟]已知奇函数f′(x)是函数f(x)(x∈R)的导函数,若x>0时,f′(x)>0,则( )
A.f(0)>f(log32)>f(-log23)
B.f(log32)>f(0)>f(-log23)
C.f(-log23)>f(log32)>f(0)
D.f(-log23)>f(0)>f(log32)
解析:因为f′(x)是奇函数,所以f(x)是偶函数.而|-log23|=log23>log22=1,00时,f′(x)>0,所以f(x)在(0,+∞)上是增函数,
所以f(0)0,得x>;令f′(x)<0,得02,且f(1)=3,则不等式f(x)>2x+1的解集为( )
A.(-∞,0) B.(0,+∞)
C.(1,+∞) D.(-∞,1)
解析:f(x)>2x+1的解集即f(x)-2x-1>0的解集.构造函数g(x)=f(x)-2x-1,则g′(x)=f′(x)-2,因为f′(x)>2,所以g′(x)=f′(x)-2>0,所以g(x)=f(x)-2x-1在R上单调递增,且g(1)=f(1)-2-1=0,所以f(x)-2x-1>0的解集为(1,+∞),即不等式f(x)>2x+1的解集为(1,+∞).故选C项.
答案:C
二、填空题
6.[2020·广州模拟]已知函数f(x)=(-x2+2x)ex,x∈R,e为自然对数的底数.则函数f(x)的单调递增区间为________.
解析:因为f(x)=(-x2+2x)ex,
所以f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex.
令f′(x)>0,即(-x2+2)ex>0,
因为ex>0,所以-x2+2>0,解得-f(2)>f(3)=f(-3).
答案:f(-3)0,故f(x)的增区间为(5,+∞).
5
10.[2020·西藏山南模拟]已知函数f(x)=.
(1)当a=1时,求曲线y=f(x)在(0,f(0))处的切线方程;
(2)求函数f(x)的单调区间.
解析:(1)当a=1时,f(x)=,则f′(x)=.
又f(0)==-1,f′(0)==-2.
所以曲线y=f(x)在(0,f(0))处的切线方程为y-(-1)=-2(x-0),
即y=-2x-1.
(2)由函数f(x)=,得f′(x)=.
当a=0时,f′(x)=<0,
因为函数f(x)的定义域为(-∞,1)∪(1,+∞),
所以f(x)的单调递减区间为(-∞,1),(1,+∞),无单调递增区间,
当a≠0时,令f′(x)=0,即ax-(a+1)=0,解得x=.
当a>0时,x=>1,
所以x,f′(x),f(x)变化情况如下表:
x
(-∞,1)
(1,)
(,+∞)
f′(x)
-
-
0
+
f(x)
极小值
所以f(x)的单调递减区间为(-∞,1),1,,单调递增区间为(,+∞).
当a<0时,x=<1,
所以x,f′(x),f(x)变化情况如下表:
x
(-∞,)
(,1)
(1,+∞)
f′(x)
+
0
-
-
f(x)
极大值
所以f(x)的单调递增区间为(-∞,),单调递减区间为(,1),(1,+∞).
5
[能力挑战]
11.[2020·河南八市联考]已知函数f(x)=x2+aln x.
(1)当a=-2时,求函数f(x)的单调递减区间;
(2)若函数g(x)=f(x)+在[1,+∞)上单调,求实数a的取值范围.
解析:(1)由题意知,函数的定义域为(0,+∞),当a=-2时,f′(x)=2x-=,由f′(x)<0得0
查看更多