- 2021-06-11 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年高考数学精讲二轮练习2-7-2
1.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图: 根据该折线图,下列结论错误的是( ) A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 [解析] 折线图呈现出的是一个逐渐上升的趋势,但是并不是每个月都在增加,故A说法错误;折线图中按照年份进行划分,可以看出每年的游客量都在逐年增加,故B说法正确;折线图中每年的高峰出现在每年的7,8月,故C说法正确;每年的1月至6月相对于7月至12月的波动性更小,变化的幅度较小,说明变化比较平稳,故D说法正确. [答案] A 2.(2017·山东卷)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知i=225,i=1600,=4.该班某学生的脚长为24,据此估计其身高为( ) A.160 B.163 C.166 D.170 [解析] 由题意可得=22.5,=160,∴=160-4×22.5=70,即=4x+70.当x=24时,=4×24+70=166,故选C. [答案] C 3.(2018·江苏卷)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________. [解析] 5位裁判打出的分数分别为89,89,90,91,91,则这5位裁判打出的分数的平均数为×(89+89+90+91+91)=90. [答案] 90 4.(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下: (1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关: 箱产量<50 kg 箱产量≥50 kg 旧养殖法 新养殖法 (3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附: P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 K2=. [解] (1)记B表示事件“旧养殖法的箱产量低于50 kg”,C表示事件“新养殖法的箱产量不低于50 kg”. 由题意知P(A)=P(BC)=P(B)P(C). 旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P(B)的估计值为0.62. 新养殖法的箱产量不低于50 kg的频率为(0.068+0.046+0.010+0.008)×5=0.66, 故P(C)的估计值为0.66. 因此,事件A的概率估计值为0.62×0.66=0.4092. (2)根据箱产量的频率分布直方图得列联表 箱产量<50 kg 箱产量≥50 kg 旧养殖法 62 38 新养殖法 34 66 K2=≈15.705. 由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关. (3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法箱产量的中位数的估计值为50+≈52.35(kg). 1.统计与统计案例在选择或填空题中的命题热点主要集中在随机抽样、用样本估计总体以及变量间的相关性判断等,难度较低,常出现在3~4题的位置. 2.统计的解答题多在第18或19题的位置,多以交汇性的形式考查,交汇点主要有两种:频率分布直方图、茎叶图择一与随机变量的分布列、数学期望、方差、正态分布相交汇考查;频率分布直方图、茎叶图择一与线性回归或独立性检验相交汇来考查,难度中等.查看更多