- 2021-06-11 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020届二轮复习直线与圆圆与圆的位置关系学案(全国通用)
一、走进教材 1.(必修2P128练习T4改编)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( ) A.[-3,-1] B.[-1,3] C.[-3,1] D.(-∞,-3]∪[1,+∞) 解析 由题意可得,圆的圆心为(a,0),半径为,所以≤,即|a+1|≤2,解得-3≤a≤1。 答案 C 2.(必修2P133A组T9改编)圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为________。 解析 由得x-y+2=0。又圆x2+y2=4的圆心到直线x-y+2=0的距离为=。由勾股定理得弦长的一半为=,所以所求弦长为2。 答案 2 二、走近高考 3.(2018·全国卷Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( ) A.[2,6] B.[4,8] C.[,3] D.[2,3] 解析 因为直线x+y+2=0分别与x轴,y轴交于A,B两点。所以A(-2,0),B(0,-2),则|AB|=2。由圆(x-2)2+y2=2可得圆心坐标为(2,0),r=,△ABP的面积记为S,点P到直线AB的距离记为d,则有S=|AB|·d=d,又圆心到直线的距离d′==2,则dmax=3,dmin=,所以2≤S≤6。故选A。 答案 A 4.(2018·全国卷Ⅱ)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为( ) A.2 B. C. D. 解析 设双曲线的渐近线方程为y=x,即bx-ay=0。圆的半径为2,弦长为2。圆心(2,0)到直线的距离为,则=,即=,得=,所以=,所以1-2=,所以1-=,所以e=2。故选A。 答案 A 三、走出误区 微提醒:①忽视分两圆内切与外切两种情形;②忽视切线斜率k不存在的情形;③求弦所在直线的方程时遗漏一解。 5.若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则常数a=________。 解析 两圆的圆心距d=,由两圆相切,得=5+1或=5-1,解得a=±2或a=0。 答案 ±2或0 6.已知圆C:x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为________。 解析 由题意知P在圆外,当切线斜率不存在时,切线方程为x=3,满足题意;当切线斜率存在时,设斜率为k,所以切线方程为y-1=k(x-3),所以kx-y+1-3k=0,所以=3,所以k=-,所以切线方程为4x+3y-15=0。综上,切线方程为x=3或4x+3y-15=0。 答案 x=3或4x+3y-15=0 7.若直线过点P且被圆x2+y2=25截得的弦长是8,则该直线的方程为______________。 解析 当直线的斜率不存在时,该直线的方程为x=-3,代入圆的方程得y=±4,故该直线被圆截得的弦长为8,满足题意。当直线的斜率存在时,不妨设直线的方程为y+=k(x+3),即kx-y+3k-=0,则圆心到直线的距离d=,则2=8,解得k=-,所以直线方程为3x+4y+15=0。综上所述,所求直线方程为x=-3或3x+4y+15=0。 答案 x=-3或3x+4y+15=0 考点一直线与圆的位置关系 【例1】 (2019·西安八校联考)若过点A(3,0)的直线l与曲线(x-1)2+y2=1有公共点,则直线l斜率的取值范围为( ) A.(-,) B.[-,] C. D. 解析 数形结合可知,直线l的斜率存在,设直线l的方程为y=k(x-3),则圆心(1,0)到直线y=k(x-3)的距离应小于等于半径1,即≤1,解得-≤k≤。故选D。 解析:数形结合可知,直线l的斜率存在,设为k,当k=1时,直线l的方程为x-y-3=0,圆心(1,0)到直线l的距离为=>1,直线与圆相离,故排除A,B;当k= 时,直线l的方程为x-y-3=0,圆心(1,0)到直线l的距离为=1,直线与圆相切,排除C。故选D。 答案 D 判断直线与圆的位置关系的常见方法 1.几何法:利用d与r的关系。 2.代数法:联立方程之后利用Δ判断。 3.点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交。 【变式训练】 (1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( ) A.相切 B.相交 C.相离 D.不确定 (2)圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为( ) A.相离 B.相切 C.相交 D.以上都有可能 解析 (1)因为M(a,b)在圆O:x2+y2=1外,所以a2+b2>1,而圆心O到直线ax+by=1的距离d==<1,所以直线与圆相交。 (2)直线2tx-y-2-2t=0恒过点(1,-2),因为12+(-2)2-2×1+4×(-2)=-5<0,所以点(1,-2)在圆x2+y2-2x+4y=0内,故直线2tx-y-2-2t=0与圆x2+y2-2x+4y=0相交。故选C。 答案 (1)B (2)C 考点二圆的弦长问题微点小专题 方向1:圆的弦长问题 【例2】 (2019·合肥一模)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3),且与圆C交于A,B两点,若|AB|=2,则直线l的方程为( ) A.3x+4y-12=0或4x-3y+9=0 B.3x+4y-12=0或x=0 C.4x-3y+9=0或x=0 D.3x-4y+12=0或4x+3y+9=0 解析 因为圆x2+y2-2x-2y-2=0即(x-1)2+(y-1)2=4,所以圆心为C(1,1),圆的半径r=2,当直线l的斜率不存在时,直线l的方程为x=0,圆心到直线l的距离为d=1,所以|AB|=2=2,符合题意。当直线l的斜率存在时,设直线l的方程为y=kx+3,易知圆心C(1,1)到直线y=kx+3的距离d==,因为d2+2=r2,所以+3=4,解得k=-,所以直线l的方程为y=-x+3,即3x+4y-12=0。综上,直线 l的方程为3x+4y-12=0或x=0。故选B。 答案 B 有关弦长问题通常有两种方法:(1)几何法;(2)代数法。对于几何法通常要构造直角三角形,但要注意斜率不存在这种特殊情况。 方向2:有关最值问题 【例3】 (2019·南宁、柳州联考)过点(,0)作直线l与曲线y=相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于________。 解析 令P(,0),如图,易知|OA|=|OB|=1,所以S△AOB=|OA|·|OB|·sin∠AOB=sin∠AOB≤,当∠AOB=90°时,△AOB的面积取得最大值,此时过点O作OH⊥AB于点H,则|OH|=,于是sin∠OPH===,易知∠OPH为锐角,所以∠OPH=30°,则直线AB的倾斜角为150°,故直线AB的斜率为tan150°=-。 答案 - 有关最值问题要充分考虑最值的几何意义,比如本例当OA⊥OB时S△AOB最大。 【题点对应练】 1.(方向1)经过三点A(-1,0),B(3,0),C(1,2)的圆与y轴交于M,N两点,则|MN|=( ) A.2 B.2 C.3 D.4 解析 根据A,B两点的坐标特征可知圆心在直线x=1上,设圆心为P(1,m),则半径r=|m-2|,所以(m-2)2=22+m2,解得m=0,所以圆心为P(1,0),所以圆的方程为(x-1)2+y2=4,当x=0时,y=±,所以|MN|=2。故选A。 答案 A 2.(方向2)在平面直角坐标系中,已知点P(3,0)在圆C:(x-m)2+(y-2)2=40内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为20,则实数m 的取值范围是________。 解析 由圆的方程知,圆心C(m,2),半径r=2,所以S△ABC=r2sin∠ACB=20sin∠ACB,所以当∠ACB=时,S△ABC取得最大值20,此时△ABC为等腰直角三角形,|AB|=r=4,则点C到AB的距离为2,所以2≤|PC|<2,即2≤<2,解得-3查看更多
- 当前文档收益归属上传用户