- 2021-06-11 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习练习第6讲 空间向量及其运算
第6讲 空间向量及其运算 一、选择题 1.以下四个命题中正确的是 ( ). A.空间的任何一个向量都可用其他三个向量表示 B.若{a,b,c}为空间向量的一组基底,则{a+b,b+c,c+a}构成空间向 量的另一组基底 C.△ABC为直角三角形的充要条件是·=0 D.任何三个不共线的向量都可构成空间向量的一组基底 解析 若a+b、b+c、c+a为共面向量,则a+b=λ(b+c)+μ(c+a),(1-μ)a=(λ-1)b+(λ+μ)c,λ,μ不可能同时为1,设μ≠1,则a=b+c,则a、b、c为共面向量,此与{a,b,c}为空间向量基底矛盾. 答案 B 2.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x= ( ). A.-4 B.-2 C.4 D.2 解析 ∵a=(1,1,x),b=(1,2,1),c=(1,1,1), ∴c-a=(0,0,1-x),2b=(2,4,2). ∴(c-a)·(2b)=2(1-x)=-2,∴x=2. 答案 D 3.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是( ). A.{a,a+b,a-b} B.{b,a+b,a-b} C.{c,a+b,a-b} D.{a+b,a-b,a+2b} 解析 若c、a+b、a-b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则a、b、c为共面向量,此与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,a-b可构成空间向量的一组基底. 答案 C 4.如图所示,已知空间四边形OABC,OB=OC,且∠AOB=∠AOC=,则cos〈,〉的值为 ( ). A.0 B. C. D. 解析 设=a,=b,=c, 由已知条件〈a,b〉=〈a,c〉=,且|b|=|c|, ·=a·(c-b)=a·c-a·b=|a||c|-|a||b|=0,∴cos〈,〉=0. 答案 A 5.如图所示,在长方体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,=c,则下列向量中与相等的向量是 ( ). A.-a+b+c B.a+b+c C.-a-b+c D.a-b+c 解析 =+=+(-) =c+(b-a)=-a+b+c. 答案 A 6.如图,在大小为45°的二面角A-EF-D中,四边形ABFE,CDEF都是边长为1的正方形,则B,D两点间的距离是( ) A. B. C.1 D. 解析 =++,∴||2=||2+||2+||2+2·+2·+2·=1+1+1-=3-,故||=. 答案 D 二、填空题 7. 设R,向量,且,则 解析 . 答案 8. 在空间四边形ABCD中,·+·+·=________. 解析 如图,设=a,=b,=c, ·+·+·=a·(c-b)+b·(a-c)+c·(b-a)=0. 答案 0 9.已知ABCD-A1B1C1D1为正方体,①(++)2=32;②·(-)=0;③向量与向量的夹角是60°;④正方体ABCD-A1B1C1D1的体积为|··|.其中正确命题的序号是________. 解析 由⊥,⊥,⊥⊥,得(++)2=3()2,故①正确;②中-=,由于AB1⊥A1C,故②正确;③中A1B与AD1两异面直线所成角为60°,但与的夹角为120°,故③不正确;④中|··|=0.故④也不正确. 答案 ①② 10.如图,空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,则OA与BC所成角的余弦值等于________. 解析 设=a,=b,=c. OA与BC所成的角为θ, ·=a(c-b)=a·c-a·b=a·(a+)-a·(a+)=a2+a·-a2-a·=24-16. ∴cos θ===. 答案 三、解答题 11.已知A、B、C三点不共线,对平面ABC外的任一点O,若点M满足=(++). (1)判断、、三个向量是否共面; (2)判断点M是否在平面ABC内. 解 (1)由已知++=3 , ∴-=(-)+(-), 即=+=--, ∴,,共面. (2)由(1)知,,,共面且基线过同一点M, ∴四点M,A,B,C共面,从而点M在平面ABC内. 12.把边长为a的正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC的中点,点O是原正方形的中心,求: (1)EF的长; (2)折起后∠EOF的大小. 解 如图,以O点为原点建立空间直角坐标系O-xyz,则A(0,-a,0), B(a,0,0),C(0,a,0),D(0,0,a),E(0,-a,a), F(a,a,0). (1)||2=2+2+2=a2,∴|EF|=a. (2)=,=, ·=0×a+×+a×0=-, ||=,||=,cos〈,〉==-, ∴∠EOF=120°. 13.如图,已知M、N分别为四面体ABCD的面BCD与面ACD的重心,且G为AM上一点,且GM∶GA=1∶3.求证:B、G、N三点共线. 证明 设=a,=b,=c,则 =+=+ =-a+(a+b+c)=-a+b+c, =+=+(+) =-a+b+c=. ∴∥,即B、G、N三点共线. 14.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB、AD、CD的中点,计算: (1)·;(2)·;(3)EG的长; (4)异面直线AG与CE所成角的余弦值. 解 设=a,=b,=c. 则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°, (1)==c-a,=-a,=b-c, ·=·(-a)=a2-a·c=, (2)·=(c-a)·(b-c) =(b·c-a·b-c2+a·c)=-; (3)=++=a+b-a+c-b =-a+b+c, ||2=a2+b2+c2-a·b+b·c-c·a=,则||=. (4)=b+c,=+=-b+a, cos〈,〉==-, 由于异面直线所成角的范围是(0°,90°], 所以异面直线AG与CE所成角的余弦值为.查看更多