数学理卷·2019届河北省安平中学高二下学期第一次月考(2018-04)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

数学理卷·2019届河北省安平中学高二下学期第一次月考(2018-04)

安平中学2017—2018学年下学期第一次月考 ‎ ‎ 数学试题 (高二普通理科)‎ 考试时间 120分钟 试题分数 150分 ‎ 一、 选择题:(每题只有一个正确选项。共12个小题,每题5分,共60分。)‎ ‎1.从甲地到乙地,一天中有5次火车,12次客车,3次飞机航班,还有6次轮船,某人某天要从甲地到乙地,共有不同走法的种数是(  )A.26 B.60 C.18 D.1 080‎ ‎2.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为(  )A.20 B.25 C.32 D.60‎ ‎3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有(  )‎ A.30个 B.42个 C.36个 D.35个 ‎4.考生甲填报某高校专业意向,打算从5个专业中挑选3个,分别作为第一、第二、第三志愿,则不同的填法有(  )‎ A.10种 B.60种 C.125种 D.243种 ‎5.世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数为(  )‎ A.12 B.1 C.8 D.6‎ ‎6.C+2C+4C+…+2n-1C等于(  )‎ A.3n B.2·3n C.-1 D. ‎7.某学校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有(  )‎ A.6种 B.12种 C.18种 D.20种 ‎8.(4x-2-x)6(x∈R)展开式中的常数项是(  )‎ A.-20 B.-15 C.15 D.20‎ ‎9. 4位男生和2位女生排成一排,男生有且只有2位相邻,则不同排法的种数是(  )‎ A.72 B.96 C.144 D.240‎ ‎10.设(x-a)8=a0+a1x+a2x2+…+a8x8,若a5+a8=-6,则实数a的值为(  )‎ A.- B. C.1 D.2‎ ‎11.现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同的取法种数是(  )‎ A.135 B.172 C.189 D.162‎ ‎12.若(1+x)+(1+x)2+…+(1+x)n=a0+a1(1-x)+a2(1-x)2+…+an(1-x)n,则a0-a1+a2-…+(-1)nan等于(  )‎ A.(3n-1) B.(3n-2)‎ C.(3n-2) D.(3n-1) ‎ 二.填空题(共4个小题,每题5分,共20分。)‎ ‎13.十字路口来往的车辆,如果不允许回头,共有________种行车路线.‎ ‎14.将3本不同的数学书和2本不同的语文书在书架上排成一行,若2本语文书相邻排放,则不同的排放方案共有________种.(用数字作答)‎ ‎15.六张卡片上分别写有数字0,1,2,3,4,5,从中任取四张排成一排,可以组成不同的四位奇数的个数为________.‎ ‎16.已知二项展开式(1+ax)5=1+a1x+a2x2+a3x3+a4x4+a5x5,集合A={80,40,32,10}.若ai∈A(i=1,2,3,4,5),则a=_____.‎ 三、 解答题:(解答题应写出必要的文字说明和演算步骤) ‎ ‎17.(本小题满分10分)‎ 高二年级数学课外小组人:‎ ‎①从中选一名正组长和一名副组长,共有多少种不同的选法?‎ ‎②从中选名参加省数学竞赛,有多少种不同的选法?‎ ‎18.(本小题满分12分)‎ 解方程 ‎ ‎19.(本小题满分12分)‎ 已知 其中是常数,‎ 计算 20. ‎(本题满分12分)‎ 的展开式奇数项的二项式系数之和为,‎ 则求展开式中二项式系数最大项。‎ ‎21(本小题满分12分)‎ 已知展开式中的二项式系数的和比 展开式的二项式系数的和大,求展开式中的系数最大的项和系数最小的项.‎ ‎22.(本题满分12分)‎ 从中任选三个不同元素作为二次函数的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?‎ 高二(普通理班)数学答案 ACCBD DDCCB CD 13. ‎ 12 14. 48 ‎ 14. ‎ 144 16. 2.‎ 17. ‎(本题满分10分)‎ ①是排列问题,共有种选法;‎ ②是组合问题,共有种选法。‎ 18. ‎(本题满分12分)‎ 解:‎ 得 ‎ ‎ ‎19.(本题满分12分)‎ 设,令,得 ‎ 令,得 ‎20.(本题满分12分)‎ 由已知得,而展开式中二项式 系数最大项是。 ‎ ‎21.(本题满分12分)‎ ‎ 解:,的通项 当时,展开式中的系数最大,即为展开式中的系数最大的项;‎ 当时,展开式中的系数最小,即为展开式中的系数最小的项。‎ ‎22.(本题满分12分) ‎ 解:抛物线经过原点,得,‎ 当顶点在第一象限时,,则有种;‎ 当顶点在第三象限时,,则有种;‎ 共计有种。‎
查看更多

相关文章

您可能关注的文档