2018届二轮复习 导数与函数的极值、最值 学案(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018届二轮复习 导数与函数的极值、最值 学案(全国通用)

专题5 导数与函数的极值、最值 导数与函数的极值、最值 ‎★★★‎ ‎○○○○‎ ‎1.函数的极小值 函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近的其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.‎ ‎2.函数的极大值 函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.‎ ‎3.函数的极值 极小值点和极大值点统称为极值点,极小值和极大值统称为极值.‎ 知图判断函数极值情况的策略 知图判断函数极值情况的思路是:先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x轴交点的横坐标为函数的极值点.‎ ‎[例] 设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x ‎)的图象如图所示,则下列结论中一定成立的是(  )‎ A.函数f(x)有极大值f(2)和极小值f(1)‎ B.函数f(x)有极大值f(-2)和极小值f(1)‎ C.函数f(x)有极大值f(2)和极小值f(-2)‎ D.函数f(x)有极大值f(-2)和极小值f(2)‎ ‎[解析] 由图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.‎ ‎[答案]  D ‎1. 已知函数f(x)=(x-k)ex.‎ ‎(1)求f(x)的单调区间;‎ ‎(2)求f(x)在区间[0,1]上的最小值.‎ ‎[解] (1)由题意知f′(x)=(x-k+1)ex.‎ 令f′(x)=0,得x=k-1.‎ f(x)与f′(x)的情况如下:‎ x ‎(-∞,k-1)‎ k-1‎ ‎(k-1,+∞)‎ f′(x)‎ ‎-‎ ‎0‎ ‎+‎ f(x)‎  ‎-ek-1‎  所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).‎ ‎2. 已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=时,y=f(x)有极值.‎ ‎(1)求a,b,c的值;‎ ‎(2)求y=f(x)在[-3,1]上的最大值和最小值.‎ ‎[解] (1)由f(x)=x3+ax2+bx+c,‎ 得f′(x)=3x2+2ax+b.‎ 当x=1时,切线l的斜率为3,可得‎2a+b=0,①‎ 当x=时,y=f(x)有极值,则f′=0,‎ 可得‎4a+3b+4=0,②‎ 由①②,解得a=2,b=-4.‎ 由于切点的横坐标为1,所以f(1)=4.‎ 所以1+a+b+c=4,得c=5.‎ ‎(2)由(1)可得f(x)=x3+2x2-4x+5,‎ f′(x)=3x2+4x-4.‎ 令f′(x)=0,解得x1=-2,x2=.‎ 当x变化时,f′(x),f(x)的取值及变化情况如下表所示:‎ x ‎-3‎ ‎(-3,-2)‎ ‎-2‎ ‎1‎ f′(x)‎ ‎+‎ ‎0‎ ‎-‎ ‎0‎ ‎+‎ f(x)‎ ‎8‎  ‎13‎   ‎4‎ 所以y=f(x)在[-3,1]上的最大值为13,最小值为.‎ ‎3.(2013·新课标全国卷Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是(  )‎ A.∃x0∈R,f(x0)=0‎ B.函数y=f(x)的图象是中心对称图形 C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减 D.若x0是f(x)的极值点,则 f′(x0)=0‎ 解析:选C 因为函数f(x)的值域为R,所以一定∃x0∈R,f(x0)=0,选项A中的结论正确;函数f(x)的解析式可以通过配方的方法化为形如(x+m)3+n(x+m)+h的形式,通过平移函数图象,函数的解析式可以化为y=x3+nx的形式,这是一个奇函数,其图象关于坐标原点对称,故函数f(x)的图象是中心对称图形,选项B中的结论正确;由于三次函数的三次项系数为正值,故函数如果存在极值点x1,x2,则极小值点x2>x1,即函数在-∞到极小值点的区间上是先递增后递减的,所以选项C中的结论错误;根据导数与极值的关系,显然选项D中的结论正确.‎ ‎1.若函数f(x)=x3-2cx2+x有极值点,则实数c的取值范围为(  )‎ A. B. C.∪ D.∪ 解析:选D 若函数f(x)=x3-2cx2+x有极值点,则f′(x)=3x2-4cx+1=0有根,故Δ=(-‎4c)2-12>0,从而c>或c<-.故实数c的取值范围为-∞,-∪.‎ ‎2.已知函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为(  )‎ A.1 B.‎2 ‎‎ C.3 D.4‎ 解析:选B 由函数极值的定义和导函数的图象可知,f′(x)在(a,b)上与x轴的交点个数为4,但是在原点附近的导数值恒大于零,故x=0不是函数f(x)的极值点,其余的3个交点都是极值点,其中有2个点满足其附近的导数值左正右负,故极大值点有2个.‎ ‎3.已知函数f(x)=x(x-m)2在x=1处取得极小值,则实数m=(  )‎ A.0 B.‎1 ‎‎ C.2 D.3‎ ‎3.函数f(x)=ln x-x在区间(0,e]上的最大值为(  )‎ A.1-e B.-‎1 ‎‎ C.-e D.0‎ 解析:选B 因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时,f′(x)<0,所以f(x ‎)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1.‎ ‎4.已知函数f(x)=(2x-x2)ex,则(  )‎ A.f()是f(x)的极大值也是最大值 B.f()是f(x)的极大值但不是最大值 C.f(-)是f(x)的极小值也是最小值 D.f(x)没有最大值也没有最小值 ‎5.函数f(x)=xsin x+cos x在上的最大值为________.‎ 解析:因为f′(x)=sin x+xcos x-sin x=xcos x,所以f′(x)=0在x∈上的解为x=.又f=+,f=,f(π)=-1,所以函数f(x)=xsin x+cos x在上的最大值为.‎ 答案: ‎6.已知函数f(x)=x-aln x(a∈R).‎ ‎(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;‎ ‎(2)求函数f(x)的极值.‎ 解:由题意知函数f(x)的定义域为(0,+∞),f′(x)=1-.‎ ‎(1)当a=2时,f(x)=x-2ln x,f′(x)=1-(x>0),‎ 因为f(1)=1,f′(1)=-1,‎ 所以曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.‎ ‎(2)由f′(x)=1-=,x>0知:‎ ‎①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;‎ ‎②当a>0时,由f′(x)=0,解得x=a.‎ 又当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0,‎ 从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-aln a,无极大值.‎ 综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-aln a,无极大值.‎ ‎7.已知函数f(x)=ax3+bx+c在x=2处取得极值为c-16.‎ ‎(1)求a,b的值;‎ ‎(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.‎ ‎ ‎ ‎(2)由(1)知f(x)=x3-12x+c,f′(x)=3x2-12.‎ 令f′(x)=0,得x1=-2,x2=2.‎ 当x∈(-∞,-2)时,f′(x)>0,‎ 故f(x)在(-∞,-2)上为增函数.‎ 当x∈(-2,2)时,f′(x)<0,‎ 故f(x)在(-2,2)上为减函数;‎ 当x∈(2,+∞)时,f′(x)>0,‎ 故f(x)在(2,+∞)上为增函数.‎ 由此可知f(x)在x1=-2处取得极大值f(-2)=16+c,在x2=2处取得极小值f(2)=c-16.‎ 由题设条件知16+c=28,得c=12,‎ 此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=c-16=-4,因此f(x)在[-3,3]上的最小值为f(2)=-4.‎ ‎________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________‎
查看更多

相关文章

您可能关注的文档