- 2021-06-11 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018届二轮复习 导数与函数的极值、最值 学案(全国通用)
专题5 导数与函数的极值、最值 导数与函数的极值、最值 ★★★ ○○○○ 1.函数的极小值 函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近的其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值. 2.函数的极大值 函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值. 3.函数的极值 极小值点和极大值点统称为极值点,极小值和极大值统称为极值. 知图判断函数极值情况的策略 知图判断函数极值情况的思路是:先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x轴交点的横坐标为函数的极值点. [例] 设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x )的图象如图所示,则下列结论中一定成立的是( ) A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) [解析] 由图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值. [答案] D 1. 已知函数f(x)=(x-k)ex. (1)求f(x)的单调区间; (2)求f(x)在区间[0,1]上的最小值. [解] (1)由题意知f′(x)=(x-k+1)ex. 令f′(x)=0,得x=k-1. f(x)与f′(x)的情况如下: x (-∞,k-1) k-1 (k-1,+∞) f′(x) - 0 + f(x) -ek-1 所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞). 2. 已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=时,y=f(x)有极值. (1)求a,b,c的值; (2)求y=f(x)在[-3,1]上的最大值和最小值. [解] (1)由f(x)=x3+ax2+bx+c, 得f′(x)=3x2+2ax+b. 当x=1时,切线l的斜率为3,可得2a+b=0,① 当x=时,y=f(x)有极值,则f′=0, 可得4a+3b+4=0,② 由①②,解得a=2,b=-4. 由于切点的横坐标为1,所以f(1)=4. 所以1+a+b+c=4,得c=5. (2)由(1)可得f(x)=x3+2x2-4x+5, f′(x)=3x2+4x-4. 令f′(x)=0,解得x1=-2,x2=. 当x变化时,f′(x),f(x)的取值及变化情况如下表所示: x -3 (-3,-2) -2 1 f′(x) + 0 - 0 + f(x) 8 13 4 所以y=f(x)在[-3,1]上的最大值为13,最小值为. 3.(2013·新课标全国卷Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ) A.∃x0∈R,f(x0)=0 B.函数y=f(x)的图象是中心对称图形 C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减 D.若x0是f(x)的极值点,则 f′(x0)=0 解析:选C 因为函数f(x)的值域为R,所以一定∃x0∈R,f(x0)=0,选项A中的结论正确;函数f(x)的解析式可以通过配方的方法化为形如(x+m)3+n(x+m)+h的形式,通过平移函数图象,函数的解析式可以化为y=x3+nx的形式,这是一个奇函数,其图象关于坐标原点对称,故函数f(x)的图象是中心对称图形,选项B中的结论正确;由于三次函数的三次项系数为正值,故函数如果存在极值点x1,x2,则极小值点x2>x1,即函数在-∞到极小值点的区间上是先递增后递减的,所以选项C中的结论错误;根据导数与极值的关系,显然选项D中的结论正确. 1.若函数f(x)=x3-2cx2+x有极值点,则实数c的取值范围为( ) A. B. C.∪ D.∪ 解析:选D 若函数f(x)=x3-2cx2+x有极值点,则f′(x)=3x2-4cx+1=0有根,故Δ=(-4c)2-12>0,从而c>或c<-.故实数c的取值范围为-∞,-∪. 2.已知函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为( ) A.1 B.2 C.3 D.4 解析:选B 由函数极值的定义和导函数的图象可知,f′(x)在(a,b)上与x轴的交点个数为4,但是在原点附近的导数值恒大于零,故x=0不是函数f(x)的极值点,其余的3个交点都是极值点,其中有2个点满足其附近的导数值左正右负,故极大值点有2个. 3.已知函数f(x)=x(x-m)2在x=1处取得极小值,则实数m=( ) A.0 B.1 C.2 D.3 3.函数f(x)=ln x-x在区间(0,e]上的最大值为( ) A.1-e B.-1 C.-e D.0 解析:选B 因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时,f′(x)<0,所以f(x )的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1. 4.已知函数f(x)=(2x-x2)ex,则( ) A.f()是f(x)的极大值也是最大值 B.f()是f(x)的极大值但不是最大值 C.f(-)是f(x)的极小值也是最小值 D.f(x)没有最大值也没有最小值 5.函数f(x)=xsin x+cos x在上的最大值为________. 解析:因为f′(x)=sin x+xcos x-sin x=xcos x,所以f′(x)=0在x∈上的解为x=.又f=+,f=,f(π)=-1,所以函数f(x)=xsin x+cos x在上的最大值为. 答案: 6.已知函数f(x)=x-aln x(a∈R). (1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程; (2)求函数f(x)的极值. 解:由题意知函数f(x)的定义域为(0,+∞),f′(x)=1-. (1)当a=2时,f(x)=x-2ln x,f′(x)=1-(x>0), 因为f(1)=1,f′(1)=-1, 所以曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0. (2)由f′(x)=1-=,x>0知: ①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值; ②当a>0时,由f′(x)=0,解得x=a. 又当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0, 从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-aln a,无极大值. 综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-aln a,无极大值. 7.已知函数f(x)=ax3+bx+c在x=2处取得极值为c-16. (1)求a,b的值; (2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值. (2)由(1)知f(x)=x3-12x+c,f′(x)=3x2-12. 令f′(x)=0,得x1=-2,x2=2. 当x∈(-∞,-2)时,f′(x)>0, 故f(x)在(-∞,-2)上为增函数. 当x∈(-2,2)时,f′(x)<0, 故f(x)在(-2,2)上为减函数; 当x∈(2,+∞)时,f′(x)>0, 故f(x)在(2,+∞)上为增函数. 由此可知f(x)在x1=-2处取得极大值f(-2)=16+c,在x2=2处取得极小值f(2)=c-16. 由题设条件知16+c=28,得c=12, 此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=c-16=-4,因此f(x)在[-3,3]上的最小值为f(2)=-4. ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________查看更多