2019-2020学年海南省华侨中学三亚分校(三亚华侨中学)高二上学期期中考试数学试题 Word版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019-2020学年海南省华侨中学三亚分校(三亚华侨中学)高二上学期期中考试数学试题 Word版

海南省华侨中学三亚分校(三亚华侨中学)2019-2020学年度高二年级期中试卷 数学科 ‎ 审题人:王丹萍 注意事项:‎ ‎1.本次考试的试卷分为试题卷和答题卷,本卷为试题卷,请将答案和解答写在答题卷指定的位置,在试题卷和其它位置解答无效.‎ ‎2.本试卷满分150分,考试时间120分钟.‎ 第Ⅰ卷 选择题 一、 选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的;每小题选出答案后,请用2B铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在本卷上作答无效) ‎ ‎1、从高二年级1000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是 ( )‎ A、1000名学生是总体 B、每个被抽查的学生是个体 C、抽查的125名学生的体重是一个样本 D、抽取的125名学生的体重是样本容量 ‎2、命题“对任意,都有”的否定是 ( )‎ A、对任意,都有 B、不存在,使得 ‎ C、存在,使得 D、存在,使得 ‎3、已知,则“”是“”的 ( )‎ A、充分不必要条件 B、必要不充分条件 ‎ C、充要条件 D、既不充分也不必要条件 ‎4、我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500‎ 石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为 ( )‎ A、180石 B、12500石 C、160石 D、120石 ‎5、平面的法向量,平面的法向量,则下列命题正确的是 (  )‎ A、平行 B、垂直 C、 重合 D、不垂直 ‎6、某商场连续10天对甲商品每天的销售量(单位:件)进行了统计,得到如图所示的茎叶图,据该图估计商店一天的销售量不低于40件的频率为 (  )‎ A、 B、 C、 D、‎ ‎7、若空间直角坐标系中,x轴上一点P到点Q(3,1,1)的距离为,则点P的坐标为 (  )‎ A、 B、 C、 D、或 ‎8、已知向量,,则 (  )‎ A、50 B、‎14 ‎C、 D、‎ ‎9、若不等式成立的充分不必要条件为,则实数的取值范围是 (  )‎ ‎ A、 B、 C、 D、‎ ‎10、已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量 ‎,则  (  ) ​ A、 B、‎ C、 D、‎ ‎​‎ ‎11、已知则的最小值是 (  )‎ A、 B、 C、 D、 ‎ ‎12、在长方体中,,,则异面直线与所成角的余弦值为 (  ) A、 B、 C、 D、‎ 第Ⅱ卷 非选择题 一、 填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷中的横线上).‎ ‎13、甲乙两种冬小麦试验品种连续5年的平均单位面积产量如下:‎ 品种 第一年 第二年 第三年 第四年 第五年 甲 ‎9.8‎ ‎9.9‎ ‎10.1‎ ‎10‎ ‎10.2‎ 乙 ‎9.4‎ ‎10.3‎ ‎10.8‎ ‎9.7‎ ‎9.8‎ 其中产量比较稳定的小麦品种是 .‎ ‎14、已知空间向量,则向量与的夹角为________.‎ ‎15、已知空间三点的坐标为,若三点共线,则 ‎16、如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后.某学生得出下列四个结论:‎ ‎ ①;        ②;‎ ‎ ③三棱锥D-ABC是正三棱锥;‎ ‎④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确的结论是__________.‎ 三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).‎ ‎17、(本小题满分10分)若. (1)若,求实数的值; (2)若,求实数的值;‎ 18、 ‎(本小题满分12分)已知点的坐标分别为 (1) 若,且,求的值;‎ (2) 若的坐标为,且四点共面,求的值.‎ ‎19、(本小题满分12分)已知集合集合.‎ (1) 若A是B的充分条件,求实数的取值范围.‎ (2) 是否存在实数,使得A是B的充要条件?若存在,求出的值;若不存在,请说明理由.‎ ‎20、(本小题满分12分)某校高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:   ‎ ‎(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;‎ ‎(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.‎ ‎21、(本小题满分12分)如图,在平行六面体中,两两夹角为,长度分别为,点在线段上,且,记。‎ ‎(1)试用表示;‎ ‎(2)求模. 22、(本小题满分12分)已知三棱锥中,两两垂直,,为上一点,,分别为的中点.‎ (1) 证明:; ‎ (2) 求与平面所成角的大小. ‎
查看更多

相关文章

您可能关注的文档