- 2021-06-10 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2018届一轮复习北师大版(理)古典概型教案
1.基本事件的特点 (1)任何两个基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特点的概率模型称为古典的概率模型,简称古典概型. (1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果; (2)每一个试验结果出现的可能性相同. 3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=. 4.古典概型的概率公式 P(A)=. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( × ) (2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( × ) (3)从市场上出售的标准为500±5 g的袋装食盐中任取一袋,测其重量,属于古典概型.( × ) (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为.( √ ) (5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( √ ) (6)在古典概型中,如果事件A中基本事件构成集合A,且集合A中的元素个数为n,所有的 基本事件构成集合I,且集合I中元素个数为m,则事件A的概率为.( √ ) 1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A. B. C. D. 答案 B 解析 基本事件的总数为6, 构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2,所以所求概率P==,故选B. 2.(2016·北京)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A. B. C. D. 答案 B 解析 从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为=. 3.(2015·课标全国Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A. B. C. D. 答案 C 解析 从1,2,3,4,5中任取3个不同的数共有C=10(个)不同的结果,其中勾股数只有一组,故所求概率为P=. 4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为_______________________________. 答案 解析 取两个点的所有情况为10种, 所有距离不小于正方形边长的情况有6种, 概率为=. 5.(教材改编)同时掷两个骰子,向上点数不相同的概率为________. 答案 解析 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有 6个,所以点数不同的概率P=1-=. 题型一 基本事件与古典概型的判断 例1 (1)有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数.试写出: ①试验的基本事件; ②事件“出现点数之和大于3”包含的基本事件; ③事件“出现点数相等”包含的基本事件. (2)袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球. ①有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型? ②若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型? 解 (1)①这个试验的基本事件为 (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4). ②事件“出现点数之和大于3”包含的基本事件为 (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). ③事件“出现点数相等”包含的基本事件为 (1,1),(2,2),(3,3),(4,4). (2)①由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法. 又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型. ②由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”, 又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为,而白球有5个, 故一次摸球摸到白球的可能性为, 同理可知摸到黑球、红球的可能性均为, 显然这三个基本事件出现的可能性不相等, 所以以颜色为划分基本事件的依据的概率模型不是古典概型. 思维升华 一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型. 下列试验中,古典概型的个数为( ) ①向上抛一枚质地不均匀的硬币,观察正面向上的概率; ②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合; ③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率; ④在线段[0,5]上任取一点,求此点小于2的概率. A.0 B.1 C.2 D.3 答案 B 解析 ①中,硬币质地不均匀,不是等可能事件, 所以不是古典概型; ②④的基本事件都不是有限个,不是古典概型; ③符合古典概型的特点,是古典概型. 题型二 古典概型的求法 例2 (1)(2015·广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,则所取的2个球中恰有1个白球,1个红球的概率为( ) A. B. C. D.1 (2)(2015·江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. (3)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木、木克土、土克水、水克火、火克金.”将这五种不同属性的物质任意排成一列,设事件A表示“排列中属性相克的两种物质不相邻”,则事件A发生的概率为________. 答案 (1)B (2) (3) 解析 (1)从袋中任取2个球共有C=105(种)取法,其中恰好1个白球1个红球共有CC=50(种)取法,所以所取的球恰好1个白球1个红球的概率为=. (2)基本事件共有C=6(种), 设取出两只球颜色不同为事件A, A包含的基本事件有CC+CC=5(种). 故P(A)=. (3)五种不同属性的物质任意排成一列的所有基本事件数为A=120,满足事件A“排列中属性相克的两种物质不相邻”的基本事件可以按如下方法进行考虑:从左至右,当第一个位置的属性确定后,例如:金,第二个位置(除去金本身)只能排土或水属性,当第二个位置的属性确定后,其他三个位置的属性也确定,故共有CC=10(种)可能,所以事件A出现的概率为=. 引申探究 1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率. 解 基本事件数仍为6.设标号和为奇数为事件A,则A包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种, 所以P(A)==. 2.本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率. 解 基本事件数为CC=16, 颜色相同的事件数为CC+CC=6, 所求概率为=. 思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择. (1)(2016·全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A. B. C. D. 答案 C 解析 从4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛,有((红黄),( 白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),((红紫),(黄白)),((黄白),(红紫)),共6种种法,其中红色和紫色不在一个花坛的种法有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),共4种,故所求概率为P==,故选C. (2)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c. ①求“抽取的卡片上的数字满足a+b=c”的概率; ②求“抽取的卡片上的数字a,b,c不完全相同”的概率. 解 ①由题意知,(a,b,c)所有的可能为 (1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种. 设“抽取的卡片上的数字满足a+b=c”为事件A, 则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P(A)==. 因此,“抽取的卡片上的数字满足a+b=c”的概率为. ②设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种. 所以P(B)=1-P()=1-=. 因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为. 题型三 古典概型与统计的综合应用 例3 (2015·安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100]. (1)求频率分布直方图中a的值; (2)估计该企业的职工对该部门评分不低于80的概率; (3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. 解 (1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006. (2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4, 所以该企业职工对该部门评分不低于80的概率的估计值为0.4. (3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A1,A2,A3; 受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B1,B2, 从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=. 思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点.概率与统计结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决. 海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测. 地区 A B C 数量 50 150 100 (1)求这6件样品中来自A,B,C各地区商品的数量; (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率. 解 (1)因为样本容量与总体中的个体数的比是 =, 所以样本中包含三个地区的个体数量分别是 50×=1,150×=3,100×=2. 所以A,B,C三个地区的商品被选取的件数分别是1,3,2. (2)设6件来自A,B,C三个地区的样品分别为 A;B1,B2,B3;C1,C2. 则从6件样品中抽取的这2件商品构成的所有基本事件为{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个. 每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的. 记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1, B3},{B2,B3},{C1,C2},共4个.所以P(D)=, 即这2件商品来自相同地区的概率为. 六审细节更完善 典例 (12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率; (2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n查看更多