2020年浙江新高考数学二轮复习专题强化练:专题六 3 第3讲 独立重复试验模型及二项分布

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020年浙江新高考数学二轮复习专题强化练:专题六 3 第3讲 独立重复试验模型及二项分布

专题强化训练 ‎1.如果ξ~B(5,0.1),那么P(ξ≤2)=(  )‎ A.0.072 9         B.0.008 56‎ C.0.918 54 D.0.991 44‎ 解析:选D.P(ξ≤2)=P(ξ=0)+P(ξ=1)+P(ξ=2)‎ ‎=C·(0.1)k·(0.9)5-k ‎=(0.9)5+5×(0.1)×(0.9)4+×(0.1)2×(0.9)3‎ ‎=0.590 49+0.328 05+0.072 9‎ ‎=0.991 44.‎ ‎2.在篮球比赛中,罚球命中1次得1分,不中得0分,若某运动员罚球命中的概率为0.8,则他罚球两次得分的均值为(  )‎ A.0.8分 B.1.2分 C.1.6分 D.2分 解析:选C.设罚球得分为X,则X的所有取值为0,1,2.‎ P(X=0)=C×0.80×0.22=0.04,‎ P(X=1)=C×0.8×0.2=0.32,‎ P(X=2)=C×0.82×0.20=0.64,‎ E(X)=0.04×0+0.32×1+0.64×2=1.6.‎ ‎3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一个发生的概率是(  )‎ A.           B. C. D. 解析:选C.依题意,得P(A)=,P(B)=,且事件A,B相互独立,则事件A,B中至少有一个发生的概率为1-P(·)=1-P()·P()=1-×=,故选C.‎ ‎4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(  )‎ A.0.648 B.0.432‎ C.0.36 D.0.312‎ 解析:选A.3次投篮投中2次的概率为P(X=2)=C×0.62×(1-0.6),投中3次的概率为P(X=3)=0.63,所以通过测试的概率为P(X=2)+P(X=3)=C×0.62×(1-0.6)+0.63=0.648.故选 A.‎ ‎5.(2019·台州高三期末质量评估)经检测,有一批产品的合格率为,现从这批产品中任取5件,设取得合格产品的件数为ξ,则P(ξ=k)取得最大值时,k的值为(  )‎ A.5           B.4‎ C.3 D.2‎ 解析:选B.根据题意得,P(ξ=k)=C(1-)5-k,k=0,1,2,3,4,5,则P(ξ=0)=C×=,P(ξ=1)=C()1×()4=,P(ξ=2)=C()2×()3=,P(ξ=3)=C()3×()2=,P(ξ=4)=C()4×()1=,P(ξ=5)=C()5×()0=,故当k=4时,‎ P(ξ=k)最大.‎ ‎6.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射击到3次为止.设甲每次击中的概率为p(p≠0),射击次数为η,若η的数学期望E(η)>,则p的取值范围是(  )‎ A. B.(0,1)‎ C. D. 解析:选A.由已知得P(η=1)=p,P(η=2)=(1-p)p,P(η=3)=(1-p)2,则E(η)=p+2(1-p)p+3(1-p)2=p2-3p+3>,解得p>或p<,又p∈(0,1),所以p∈.‎ ‎7.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=________.‎ 解析:依题意,X~B(100,0.02),所以DX=100×0.02×(1-0.02)=1.96.‎ 答案:1.96‎ ‎8.国庆节放假,甲去北京旅游的概率为,乙去北京旅游的概率为,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________.‎ 解析:记在国庆期间“甲去北京旅游”为事件A,“乙去北京旅游”为事件B,又P( )=P()·P()=[1-P(A)][1-P(B)]==,‎ 甲、乙二人至少有一人去北京旅游的对立事件为甲、乙二人都不去北京旅游,‎ 故所求概率为1-P( )=1-=.‎ 答案: ‎9.抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________.‎ 解析:抛掷两枚骰子,当两枚骰子不出现5点和6点时的概率为×=,所以至少有一次出现5点或6点的概率为1-=,用X表示10次试验中成功的次数,则X~B,‎ E(X)=10×=.‎ 答案: ‎10.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=________.‎ 解析:由题意知P(X=0)=(1-p)2=,所以p=.‎ 随机变量X的分布列为:‎ X ‎0‎ ‎1‎ ‎2‎ ‎3‎ P E(X)=0×+1×+2×+3×=.‎ 答案: ‎11.(2019·开封第一次模拟)某生物产品,每一个生产周期成本为20万元,此产品的产量受气候影响、价格受市场影响均具有随机性,且互不影响,其具体情况如下表:‎ 产量(吨)‎ ‎30‎ ‎50‎ 概率 ‎0.5‎ ‎0.5‎ 市场价格(万元/吨)‎ ‎0.6‎ ‎1‎ 概率 ‎0.4‎ ‎0.6‎ ‎(1)设X表示1个生产周期此产品的利润,求X的分布列;‎ ‎(2)连续3个生产周期,求这3个生产周期中至少有 ‎2个生产周期的利润不少于10万元的概率.‎ 解:(1)设A表示事件“产品产量为30吨”,B表示事件“产品市场价格为0.6万元/吨”,则P(A)=0.5,P(B)=0.4,‎ 因为利润=产量×市场价格-成本,‎ 所以X的所有值为 ‎50×1-20=30,50×0.6-20=10,‎ ‎30×1-20=10,30×0.6-20=-2,‎ 则P(X=30)=P()P()=(1-0.5)×(1-0.4)=0.3,‎ P(X=10)=P()P(B)+P(A)P()=(1-0.5)×0.4+0.5×(1-0.4)=0.5,‎ P(X=-2)=P(A)P(B)=0.5×0.4=0.2,‎ 则X的分布列为 X ‎30‎ ‎10‎ ‎-2‎ P ‎0.3‎ ‎0.5‎ ‎0.2‎ ‎(2)设Ci表示事件“第i个生产周期的利润不少于10万元”‎ ‎(i=1,2,3),则C1,C2,C3相互独立,‎ 由(1)知,P(Ci)=P(X=30)+P(X=10)=0.3+0.5=0.8(i=1,2,3),‎ 连续3个生产周期的利润均不少于10万元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,‎ 连续3个生产周期中有2个生产周期的利润不少于10万元的概率为P(C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,‎ 所以连续3个生产周期中至少有2个生产周期的利润不少于10万元的概率为0.512+0.384=0.896.‎ ‎12.小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.‎ ‎(1)若小王发放5元的红包2个,求甲恰得1个的概率;‎ ‎(2)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列及数学期望.‎ 解:(1)设“甲恰得1个红包”为事件A,‎ 则P(A)=C××=.‎ ‎(2)X的所有可能取值为0,5,10,15,20.‎ P(X=0)==,‎ P(X=5)=C××=,‎ P(X=10)=×+×=,‎ P(X=15)=C××=,‎ P(X=20)==.‎ X的分布列为:‎ X ‎0‎ ‎5‎ ‎10‎ ‎15‎ ‎20‎ P E(X)=0×+5×+10×+15×+20×=.‎ ‎13.在2017年全国高校自主招生考试中,某高校设计了一个面试考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立回答全部问题.规定:至少正确回答其中2题的便可通过.已知6道备选题中考生甲有4题能正确回答,2题不能回答;考生乙每题正确回答的概率都为,且每题正确回答与否互不影响.‎ ‎(1)分别写出甲、乙两考生正确回答题数的分布列、并计算其数学期望;‎ ‎(2)试用统计知识分析比较两考生的通过能力.‎ 解:(1)设考生甲、乙正确回答的题目个数分别为ξ,η.则ξ的可能取值为1,2,3,‎ P(ξ=1)==,‎ P(ξ=2)==,‎ P(ξ=3)==,‎ 所以考生甲正确回答题数的分布列为 ξ ‎1‎ ‎2‎ ‎3‎ P E(ξ)=1×+2×+3×=2.‎ 又η~B,其分布列为 η ‎0‎ ‎1‎ ‎2‎ ‎3‎ P 所以E(η)=np=3×=2.‎ ‎(2)因为D(ξ)=(2-1)2×+(2-2)2×+(2-3)2×=.‎ D(η)=np(1-p)=3××=.‎ 所以D(ξ)P(η≥2).‎ 从回答对题数的数学期望考查,两个水平相当;从回答对题数的方差考查,甲较稳定;从至少完成2题的概率考查.甲通过的可能性大.因此可以判断甲的通过能力较强.‎ ‎14.某公司准备将1 000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目供选择.若投资甲项目一年后可获得的利润ξ1(万元)的概率分布列如下表所示:‎ ξ1‎ ‎110‎ ‎120‎ ‎170‎ P m ‎0.4‎ n 且ξ1的期望E(ξ1)=120;若投资乙项目一年后可获得的利润ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为p(0<p<1)和1-p .若乙项目产品价格一年内调整次数X(次)与ξ2的关系如下表所示:‎ X ‎0‎ ‎1‎ ‎2‎ ξ2‎ ‎41.2‎ ‎117.6‎ ‎204‎ ‎(1)求m,n的值;‎ ‎(2)求ξ2的分布列;‎ ‎(3)若E(ξ1)<E(ξ2),则选择投资乙项目,求此时p的取值范围.‎ 解:(1)由题意得 解得m=0.5,n=0.1.‎ ‎(2)ξ2的可能取值为41.2,117.6,204,‎ P(ξ2=41.2)=(1-p)[1-(1-p)]=p(1-p),‎ P(ξ2=117.6)=p[1-(1-p)]+(1-p)(1-p)=p2+(1-p)2,‎ P(ξ2=204)=p(1-p),‎ 所以ξ2的分布列为:‎ ξ2‎ ‎41.2‎ ‎117.6‎ ‎204‎ P p(1-p)‎ p2+(1-p)2‎ p(1-p)‎ ‎(3)由(2)可得:‎ E(ξ2)=41.2p(1-p)+117.6[p2+(1-p)2]+204p(1-p)=-10p2+10p+117.6,‎ 由E(ξ1)<E(ξ2),得120<-10p2+10p+117.6,‎ 解得:0.4<p<0.6,‎ 即当选择投资乙项目时,p的取值范围是(0.4,0.6).‎
查看更多

相关文章

您可能关注的文档