- 2021-06-10 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019届二轮复习第十一章第4节 随机事件的概率学案(全国通用)
第4节 随机事件的概率 最新考纲 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式. 知 识 梳 理 1.概率与频率 (1)频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率. (2)概率:对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A). 2.事件的关系与运算 定义 符号表示 包含关系 如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B) B⊇A(或A⊆B) 相等关系 若B⊇A且A⊇B A=B 并事件(和事件) 若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件) A∪B(或A+B) 交事件(积事件) 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件) A∩B(或AB) 互斥事件 若A∩B为不可能事件,则称事件A与事件B互斥 A∩B=∅ 对立事件 若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件 A∩B=∅P(A∪B)=1 3.概率的几个基本性质 (1)概率的取值范围:0≤P(A)≤1. (2)必然事件的概率P(E)=1. (3)不可能事件的概率P(F)=0. (4)互斥事件概率的加法公式 ①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). ②若事件B与事件A互为对立事件,则P(A)=1-P(B). [常用结论与微点提醒] 1.频率随着试验次数的改变而改变,概率是一个常数. 2.对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,“互斥”是“对立”的必要不充分条件. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)事件发生的频率与概率是相同的.( ) (2)在大量的重复实验中,概率是频率的稳定值.( ) (3)若随机事件A发生的概率为P(A),则0≤P(A)≤1.( ) (4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( ) 答案 (1)× (2)√ (3)√ (4)× 2.(教材习题改编)某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”( ) A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件 C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件 解析 “至少有一名女生”包括“一男一女”和“两名女生”两种情况,这两种情况再加上“全是男生”构成全集,且不能同时发生,故“至少有一名女生”与“全是男生”既是互斥事件,也是对立事件. 答案 C 3.(2016·天津卷)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是, 则甲不输的概率为( ) A. B. C. D. 解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为+=. 答案 A 4.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为( ) A.0.5 B.0.3 C.0.6 D.0.9 解析 依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 答案 A 5.(2018·北京东城区调研)经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表: 排队人数 0 1 2 3 4 ≥5 概率 0.1 0.16 0.3 0.3 0.1 0.04 则该营业窗口上午9点钟时,至少有2人排队的概率是 . 解析 由表格知,至少有2人排队的概率P=0.3+0.3+0.1+0.04=0.74. 答案 0.74 考点一 随机事件间的关系 【例1】 (1)袋中装有3个白球和4个黑球,从中任取3个球,则:①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球. 在上述事件中,是对立事件的为( ) A.① B.② C.③ D.④ (2)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率为的事件是( ) A.至多有一张移动卡 B.恰有一张移动卡 C.都不是移动卡 D.至少有一张移动卡 解析 (1)至少有1个白球和全是黑球不同时发生,且一定有一个发生.故②中两事件是对立事件.③④不是互斥事件,①是互斥事件,但不是对立事件,因此是对立事件的只有②,选B. (2)至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,因此“至多有一张移动卡”的概率为. 答案 (1)B (2)A 规律方法 1.准确把握互斥事件与对立事件的概念 (1)互斥事件是不可能同时发生的事件,但也可以同时不发生. (2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生. 2.判别互斥、对立事件的方法 判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件. 【训练1】 从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( ) A.① B.②④ C.③ D.①③ 解析 从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数. 其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件. 又①②④中的事件可以同时发生,不是对立事件. 答案 C 考点二 随机事件的频率与概率 【例2】 (2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理, 以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高 气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40] 天数 2 16 36 25 7 4 以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率; (2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率. 解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为=0.6. 所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时, 若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100; 若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300; 若最高气温不低于25,则Y=450×(6-4)=900, 所以,利润Y的所有可能值为-100,300,900. Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8. 因此Y大于零的概率的估计值为0.8. 规律方法 1.概率与频率的关系 频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值. 2.随机事件概率的求法 利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率. 提醒 概率的定义是求一个事件概率的基本方法. 【训练2】 (2018·武汉调研)某鲜花店将一个月(30天)某品种鲜花的日销售量与销售天数统计如下表,将日销售量在各区间的销售天数占总天数的值视为概率. 日销售量(枝) (0,50) [50,100) [100,150) [150,200) [200,250] 销售天数 3天 5天 13天 6天 3天 (1)求这30天中日销售量低于100枝的概率; (2)若此花店在日销售量低于100枝的时候选择两天做促销活动,求这两天恰好是在日销售量低于50枝时的概率. 解 (1)设鲜花店日销售量为x枝, 则P(0查看更多
相关文章
- 当前文档收益归属上传用户