- 2021-06-10 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2019届文科一轮复习人教A版选修4-5绝对值不等式教案
选修4-5 不等式选讲 第一节 绝对值不等式 [考纲传真] (教师用书独具)1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R),|a-c|≤|a-b|+|b-c|(a,b,c∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥C. (对应学生用书第163页) [基础知识填充] 1.绝对值三角不等式 定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立. 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立. 2.绝对值不等式的解法 (1)含绝对值的不等式|x|a的解法: 不等式 a>0 a=0 a<0 |x|a {x|x>a或x<-a} {x∈R|x≠0} R (2)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法: ①|ax+b|≤c⇔-c≤ax+b≤c; ②|ax+b|≥c⇔ax+b≥c或ax+b≤-C. (3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法 ①利用绝对值不等式的几何意义求解; ②利用零点分段法求解; ③构造函数,利用函数的图象求解. [基本能力自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)|x-a|+|x-b|的几何意义是表示数轴上的点x到点a,b的距离之和.( ) (2)不等式|a|-|b|≤|a+b|等号成立的条件是ab≤0.( ) (3)不等式|a-b|≤|a|+|b|等号成立的条件是ab≤0.( ) (4)当ab≥0时,|a+b|=|a|+|b|成立.( ) [答案] (1)√ (2)× (3)√ (4)√ 2.(教材改编)若关于x的不等式|ax-2|<3的解集为,则实数a=________. -3 [依题意,知a≠0. 又|ax-2|<3⇔-3<ax-2<3, ∴-1<ax<5. 由于|ax-2|<3的解集为, ∴a<0,=-且-=,则a=-3.] 3.(教材改编)若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________. (-∞,-3]∪[3,+∞) [由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3, ∴|x+1|+|x-2|的最小值为3, 要使|a|≥|x+1|+|x-2|有解, 只需|a|≥3,∴a≥3或a≤-3.] 4.解不等式x+|2x+3|≥2. [解] 当x≥-时,原不等式化为3x+3≥2, 3分 解得x≥-. 6分 当x<-时,原不等式化为-x-3≥2, 解得x≤-5. 8分 综上,原不等式的解集是. 10分 5.(2016·江苏高考)设a>0,|x-1|<,|y-2|<,求证:|2x+y-4|1的解集. 【导学号:79170377】 图1 [解] (1)由题意得f(x)= 3分 故y=f(x)的图象如图所示. 6分 (2)由f(x)的函数表达式及图象可知, 当f(x)=1时,可得x=1或x=3; 当f(x)=-1时,可得x=或x=5. 8分 故f(x)>1的解集为{x|1<x<3}, f(x)<-1的解集为. 所以|f(x)|>1的解集为. 10分 [规律方法] 1.本题用零点分段法画出分段函数的图象,结合图象的直观性求出不等式的解集,体现数形结合思想的应用. 2.解绝对值不等式的关键是去绝对值符号,零点分段法操作程序是:找零点,分区间,分段讨论.此外还常利用绝对值的几何意义求解. [变式训练1] (2017·全国卷Ⅰ)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围. [解] (1)当a=1时,不等式f(x)≥g(x)等价于 x2-x+|x+1|+|x-1|-4≤0.① 当x<-1时,①式化为x2-3x-4≤0,无解; 当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1; 当x>1时,①式化为x2+x-4≤0, 从而1<x≤. 所以f(x)≥g(x)的解集为. (2)当x∈[-1,1]时,g(x)=2, 所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时,f(x)≥2. 又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一, 所以f(-1)≥2且f(1)≥2,得-1≤a≤1. 所以a的取值范围为[-1,1]. 绝对值三角不等式性质的应用 对于任意的实数a(a≠0)和b,不等式|a+b|+|a-b|≥M·|a|恒成立,记实数M的最大值是m. (1)求m的值; (2)解不等式|x-1|+|x-2|≤m. [解] (1)不等式|a+b|+|a-b|≥M·|a|恒成立, 即M≤对于任意的实数a(a≠0)和b恒成立,只要左边恒小于或等于右边的最小值. 2分 因为|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|, 当且仅当(a-b)(a+b)≥0时等号成立, |a|≥|b|时,≥2成立, 也就是的最小值是2, 即m=2. 5分 (2)|x-1|+|x-2|≤2. 法一:利用绝对值的意义得:≤x≤. 10分 法二:①当x<1时,不等式为-(x-1)-(x-2)≤2, 解得x≥,所以x的取值范围是≤x<1. ②当1≤x≤2时,不等式为(x-1)-(x-2)≤2, 得x的取值范围是1≤x≤2. 8分 ③当x>2时,原不等式为(x-1)+(x-2)≤2,2<x≤. 综上可知,不等式的解集是. 10分 [规律方法] 1.(1)利用绝对值不等式性质定理要注意等号成立的条件:当ab≥0时,|a+b|=|a|+|b|;当ab≤0时,|a-b|=|a|+|b|;当(a-b)(b-c)≥0时,|a-c|=|a-b|+|b-c|. (2)对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更方便. 2.第(2)问易出现解集不全或错误.对于含绝对值的不等式,不论是分段去绝对值符号还是利用几何意义,都要不重不漏. [变式训练2] 对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围. [解] 因为|a-b|≤1,|2a-1|≤1, 所以|3a-3b|≤3,≤, 4分 所以|4a-3b+2|= ≤|3a-3b|++≤3++=6, 8分 则|4a-3b+2|的最大值为6, 所以m≥|4a-3b+2|max=6,m的取值范围是[6,+∞). 10分 绝对值不等式的综合应用 (2018·哈尔滨模拟)已知函数f(x)=|x+1|-2|x-a|,a>0. (1)当a=1时,求不等式f(x)>1的解集; (2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围. 【导学号:79170378】 [解] (1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0. 当x≤-1时,不等式化为x-4>0,无解; 当-1查看更多