【数学】2020届一轮复习人教A版条件概率、二项分布及正态分布课时作业
一、选择题
1.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则他们同时中靶的概率是( )
A. B. C. D.
解析 因为甲每打10次可中靶8次,乙每打10次可中靶7次,所以P(甲)=,P(乙)=,所以他们都中靶的概率是×=.
答案 A
2.(2019·衡水模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是( )
A. B. C. D.
解析 三次均反面朝上的概率是=,所以至少一次正面朝上的概率是1-=.
答案 D
3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A.0.8 B.0.75 C.0.6 D.0.45
解析 记事件A表示“一天的空气质量为优良”,事件B表示“随后一天的空气质量为优良”,P(A)=0.75,P(AB)=0.6.由条件概率,得P(B|A)===0.8.
答案 A
4.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)( )
A.4.56% B.13.59%
C.27.18% D.31.74%
解析 依题设,X~N(0,32),其中μ=0,σ=3.
∴P(-3
2)=0.023,则P(-2≤X≤2)=________.
解析 因为μ=0,所以P(X>2)=P(X<-2)=0.023,所以P(-2≤X≤2)=1-2×0.023=0.954.
答案 0.954
7.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立.则该选手恰好回答了4个问题就晋级下一轮的概率等于________.
解析 记“该选手恰好回答了4个问题就晋级下一轮”为事件A,由题意,若该选手恰好回答了4个问题就晋级下一轮,必有第二个问题回答错误,第三、四个回答正确,第一个问题可对可错,故P(A)=1×0.2×0.8×0.8=0.128.
答案 0.128
8.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有5个乘客,且每位乘客在这三层的每一层下电梯的概率均为,用X表示这5位乘客在第20层下电梯的人数,则P(X=4)=________.
解析 考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故X~B,
即有P(X=k)=C×,k=0,1,2,3,4,5.
故P(X=4)=C×=.
答案
三、解答题
9.在某中学篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”与“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才有机会进行“三步上篮”测试,为了节约时间,每项只需且必须投中一次即为合格.小明同学“立定投篮”的命中率为,“三步上篮”的命中率为,假设小明不放弃任何一次投篮机会且每次投篮是否命中互不影响.
(1)求小明同学一次测试合格的概率;
(2)设测试过程中小明投篮的次数为ξ,求ξ的分布列.
解 设小明第i次“立定投篮”命中为事件Ai,第i次“三步上篮”命中为事件Bi(i=1,2),依题意有P(Ai)=,P(Bi)=(i=1,2),“小明同学一次测试合格”为事件C.
(1)P()=P(12)+P(1A212)+P(A112)
=P(1)P(2)+P(1)P(A2)P(1)P(2)+P(A1)·P(1)P(2)
=+××+×=.
∴P(C)=1-=.
(2)依题意知ξ=2,3,4,
P(ξ=2)=P(A1B1)+P(12)=P(A1)P(B1)+P(1)·P(2)=,
P(ξ=3)=P(A11B2)+P(1A2B1)+P(A112)
=P(A1)P(1)P(B2)+P(1)P(A2)P(B1)+
P(A1)P(1)P(2)=,
P(ξ=4)=P(1A21)=P(1)P(A2)P(1)=.
故投篮的次数ξ的分布列为:
ξ
2
3
4
P
10.空气质量指数(AirQuality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染.
一环保人士记录去年某地六月10天的AQI的数据分别为:45,50,75,74,93,90,117,118,199,215.
(1)利用该样本估计该地六月空气质量为优良(AQI≤100)的天数;
(2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列.
解 (1)从所给数据可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,
∴该样本中空气质量为优良的频率为=,
从而估计该地六月空气质量为优良的天数为30×=18.
(2)由(1)估计某天空气质量为优良的概率为,
ξ的所有可能取值为0,1,2,3,且ξ~B.
∴P(ξ=0)==,
P(ξ=1)=C=,
P(ξ=2)=C=,
P(ξ=3)==,
ξ的分布列为
ξ
0
1
2
3
P
能力提升题组
(建议用时:20分钟)
11.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )
A. B.×
C.× D.C××
解析 由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为×.
答案 B
12.(2019·南昌月考)已知1号箱中有2个白球和4个红球、2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则两次都取到红球的概率是( )
A. B. C. D.
解析 设“从1号箱取到红球”为事件A,“从2号箱取到红球”为事件B.
由题意,P(A)==,P(B|A)==,
所以P(AB)=P(B|A)·P(A)=×=,
所以两次都取到红球的概率为.
答案 C
13.某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.
解析 设元件1,2,3的使用寿命超过1 000小时的事件分别记为A,B,C,显然P(A)=P(B)=P(C)=,∴该部件的使用寿命超过1 000小时的事件为(A+B+AB)C,
∴该部件的使用寿命超过1 000小时的概率
p=×=.
答案
14.甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4,0.5,0.7.飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6,若三人都击中,飞机必定被击落,求飞机被击落的概率.
解 设B={飞机被击落},Ai={飞机被i人击中},i=1,2,3,则B=A1B+A2B+A3B,
依题意,P(B|A1)=0.2,P(B|A2)=0.6,P(B|A3)=1,
由全概率公式P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3),
为求P(Ai),设Hi={飞机被i人击中},i=1,2,3,
可求得:P(A1)=P(H123+1H23+12H3),
P(A2)=P(H1H23+H12H3+1H2H3),
P(A3)=P(H1H2H3),
将数据代入计算得:
P(A1)=0.36,P(A2)=0.41,P(A3)=0.14.
于是P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.36×0.2+0.41×0.6+0.14×1=0.458.
即飞机被击落的概率为0.458.