- 2021-06-09 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届北师大版高考理科数一轮复习高效演练分层突破:第十一章 第2讲 用样本估计总体
[基础题组练] 1.(2019·高考全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差 解析:选A.记9个原始评分分别为a,b,c,d,e,f,g,h,i(按从小到大的顺序排列),易知e为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A. 2.(2020·陕西商洛质检)在一次53.5千米的自行车个人赛中,25名参赛选手成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为1~25号,再用系统抽样的方法从中选取5人,已知选手甲的成绩性为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为( ) A.95 B.96 C.97 D.98 解析:选C.由系统抽样法及已知条件可知被选中的其他4人的成绩分别是88,94,99,107,故平均数为=97,故选C. 3.(2020·广东珠海摸底)某班级在一次数学竞赛中设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为一等奖20元,二等奖10元,三等奖5元,参与奖2元,获奖人数的分配情况如图所示,则以下说法不正确的是( ) A.获得参与奖的人数最多 B.各个奖项中三等奖的总费用最高 C.购买奖品的平均费用为9.25元 D.购买奖品的费用的中位数为2元 解析:选C.设全班人数为a.由扇形统计图可知.一等奖占5%,二等奖占10%,三等奖占30%,参与奖占55%,获得参与奖的人数最多,故A正确;一等奖的总费用为5%a×20= a.二等奖的总费用为10%a×10=a,三等奖的总费用为30%a×5=a,参与奖的总费用为55%a×2=a,所以各个奖项中三等奖的总费用最高,故B正确;购买奖品的平均费用为5%×20+10%×10+30%×5+55%×2=4.6(元),故C错误;参与奖占55%,所以购买奖品的费用的中位数为2元,故D正确.故选C. 4.(2020·安徽六安毛坦厂中学月考)某位教师2017年的家庭总收入为80 000元,各种用途占比统计如下面的折线图.2018年收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年增加了4 750元,则该教师2018年的家庭总收入为( ) A.100 000元 B.95 000元 C.90 000元 D.85 000元 解析:选D.由已知得,2017年的就医费用为80 000×10%=8 000(元).故2018年的就医费用为8 000+4 750=12 750(元),所以该教师2018年的家庭总收入为=85 000(元).故选D. 5.甲、乙两名同学6次考试的成绩统计如图所示,甲、乙两组数据的平均数分别为甲,乙,标准差分别为σ甲,σ乙,则( ) A.甲<乙,σ甲<σ乙 B.甲<乙,σ甲>σ乙 C.甲>乙,σ甲<σ乙 D.甲>乙,σ甲>σ乙 解析:选C.由题图可知,甲同学除第二次考试成绩略低于乙同学外,其他考试成绩都远高于乙同学,可知甲>乙,题图中数据显示甲同学的成绩比乙同学稳定,故σ甲<σ乙. 6.某中学奥数培训班共有14人,分为两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则n-m的值是________. 解析:由甲组学生成绩的平均数是88,可得 =88,解得m=3.由乙组学生成绩的中位数是89,可得n=9,所以n-m=6. 答案:6 7.已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________、________. 解析:由题图甲可知学生总人数是10 000,样本容量为10 000×2%=200,抽取的高中生人数是2 000×2%=40,由题图乙可知高中生的近视率为50%,所以抽取的高中生的近视人数为40×50%=20. 答案:200 20 8.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是________. 解析:设被抽查的美术生的人数为n,因为后2个小组的频率之和为(0.037 5+0.012 5)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n==60. 答案:60 9.我国是世界上严重缺水的国家,城市缺水问题较为突出. 某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图. (1)求频率分布直方图中a的值; (2)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由. 解:(1)由频率分布直方图,可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1, 解得a=0.30. (2)由频率分布直方图知,100位居民每人月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12. 由以上样本频率分布,可以估计全市80万居民中月均用水量不低于3吨的人数为800 000×0.12=96 000. (3)因为前6组的频率之和为(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85, 所以2.5≤x<3. 由0.3×(x-2.5)=0.85-0.73,解得x=2.9. 因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准. 10.有A,B,C,D,E五位工人参加技能竞赛培训.现分别从A,B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用茎叶图表示这两组数据: (1)A,B二人预赛成绩的中位数分别是多少? (2)现要从A,B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由; (3)若从参加培训的5位工人中选2人参加技能竞赛,求A,B二人中至少有一人参加技能竞赛的概率. 解:(1)A的中位数是=84,B的中位数是=83. (2)派B参加比较合适.理由如下: B=(78+79+81+82+84+88+93+95)=85, A=(75+80+80+83+85+90+92+95)=85, s=[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5, s=[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, 因为A=B,但s查看更多