2014年高考人教版物理一轮复习精品训练 第9章 第3节 电磁感应中的电路和图象问题 含解析

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2014年高考人教版物理一轮复习精品训练 第9章 第3节 电磁感应中的电路和图象问题 含解析

课时作业 29 电磁感应中的电路和图象问题 一、不定项选择题 1.如图所示,MN、PQ 为两平行金属导轨,M、P 间连接一阻值为 R 的电阻,导轨处 于匀强磁场中,磁感应强度为 B,磁场方向与导轨所在平面垂直,图中磁场方向垂直纸面向 里,有一金属圆环沿两导轨滑动、速度为 v,与导轨接触良好,圆环的直径 d 与两导轨间的 距离相等,设金属环与导轨的电阻均可忽略,当金属环向右做匀速运动时( ) A.有感应电流通过电阻 R,大小为dBv R B.没有感应电流通过电阻 R C.没有感应电流流过金属圆环,因为穿过圆环的磁通量不变 D.有感应电流流过金属圆环,且左、右两部分流过的电流相同 2.如图所示,均匀的金属长方形线框从匀强磁场中以匀速 v 拉出,它的两边固定有带金 属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在 PQ 两 导电机构上,当金属框向右匀速拉出的过程中,电压表的读数(金属框的长为 a,宽为 b,磁 感应强度为 B)( ) A.恒定不变,读数为 Bbv B.恒定不变,读数为 Bav C.读数变大 D.读数变小 3.如图所示,竖直放置的螺线管与导线 abcd 构成回路,导线所围区域内有一垂直纸面 向里的变化的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线 abcd 所围区域内磁场 的磁感应强度按下列哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用 力( ) 4.如图所示,圆环 a 和 b 的半径之比为 R1∶R2=2∶1,且都是由粗细相同的同种材料 的导体构成,连接两环的导线电阻不计,匀强磁场的磁感应强度始终以恒定的变化率变化, 那么,当只有 a 环置于磁场中与只有 b 环置于磁场中两种情况下,A、B 两点的电势差之比 为( ) A.1∶1 B.2∶1 C.3∶1 D.4∶1 5.如图所示,图中两条平行虚线之间存在匀强磁场,虚线间的距离为 l,磁场方向垂直 纸面向里。abcd 是位于纸面内的梯形线圈,ad 与 bc 间的距离也为 l。t=0 时刻,bc 边与磁 场区域边界重合(如图)。现令线圈以恒定的速度 v 沿垂直于磁场区域边界的方向穿过磁场区 域。取沿 a→b→c→d→a 的感应电流为正,则在线圈穿越磁场区域的过程中,感应电流 I 随 时间 t 变化的图线可能是图中的( ) 6.(2012·吉林期末质检)如图所示,两块水平放置的金属板距离为 d,用导线、开关 K 与一个 n 匝的线圈连接,线圈置于方向竖直向上的变化磁场 B 中。两板间放一台小压力传 感器,压力传感器上表面静止放置一个质量为 m、电荷量为+q 的小球。K 断开时传感器上 有示数,K 闭合稳定后传感器上恰好无示数,则线圈中的磁场 B 的变化情况和磁通量变化 率分别是( ) A.正在增加,ΔΦ Δt =mgd q B.正在减弱,ΔΦ Δt =mgd nq C.正在减弱,ΔΦ Δt =mgd q D.正在增加,ΔΦ Δt =mgd nq 7.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。匀强磁场与导轨平面 垂直。阻值为 R 的导体棒垂直于导轨静止放置,且与导轨接触良好。t=0 时,将开关 S 由 1 掷到 2。q、i、v 和 a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度,下 列图象正确的是( ) 8.(2012·江苏盐城模拟)如图(a)所示,在光滑水平面上用恒力 F 拉质量为 1 kg 的单匝均 匀正方形铜线框,在 1 位置以速度 v0=3 m/s 进入匀强磁场时开始计时 t=0,此时线框中感 应电动势为 1 V,在 t=3 s 时刻线框到达 2 位置开始离开匀强磁场。此过程中 vt 图象如图(b) 所示,那么( ) (a) (b) A.t=0 时,线框右侧的边两端 M、N 间电压为 0.25 V B.恒力 F 的大小为 1.0 N C.线框完全离开磁场的位置 3 的瞬时速度为 2 m/s D.线框完全离开磁场的位置 3 的瞬时速度为 1 m/s 二、非选择题 9.均匀导线制成的单匝正方形闭合线框 abcd,每边长为 L,总电阻为 R,总质量为 m。 将其置于磁感应强度为 B 的水平匀强磁场上方 h 处,如图所示。线框由静止自由下落,线 框平面保持在竖直平面内,且 cd 边始终与水平的磁场边界面平行。当 cd 边刚进入磁场时, (1)求线框中产生的感应电动势大小; (2)求 cd 两点间的电势差大小; (3)若此时线框加速度恰好为零,求线框下落的高度 h 所应满足的条件。 10.如图所示,水平面上固定一个间距 L=1 m 的光滑平行金属导轨,整个导轨处在竖 直方向的磁感应强度 B=1 T 的匀强磁场中,导轨一端接阻值 R=9 Ω的电阻。导轨上有质量 m=1 kg、电阻 r=1 Ω、长度也为 1 m 的导体棒,在外力的作用下从 t=0 开始沿平行导轨方 向运动,其速度随时间的变化规律是 v=2 t,不计导轨电阻。求: (1)t=4 s 时导体棒受到的安培力的大小; (2)请在如图所示的坐标系中画出电流平方与时间的关系(I2-t)图象。 11.光滑平行的金属导轨 MN 和 PQ,间距 L=1.0 m,与水平面之间的夹角α=30°,匀 强磁场磁感应强度 B=2.0 T,垂直于导轨平面向上,MP 间接有阻值 R=2.0 Ω的电阻,其他 电阻不计,质量 m=2.0 kg 的金属杆 ab 垂直导轨放置,如图甲所示。用恒力 F 沿导轨平面 向上拉金属杆 ab,由静止开始运动,v-t 图象如图乙所示。取 g=10 m/s2,导轨足够长。求: 甲 乙 (1)恒力 F 的大小; (2)金属杆速度为 2.0 m/s 时的加速度大小; (3)根据 v-t 图象估算在前 0.8 s 内电阻上产生的热量。 参考答案 1.AC 解析:金属环向右匀速运动可等效为两长度为 d 的导体棒并联切割磁感线,产 生的电动势 E=Bdv,通过 R 的电流 I=E R =Bdv R ,A 正确,B 错误;对于金属圆环,由于穿 过圆环的磁通量不变,故没有感应电流流过金属圆环,C 正确,D 错误。 2.C 解析:当金属框向右匀速拉出的过程中,感应电动势 E=Bbv 不变,但外电阻变 大,故路端电压变大,电压表的读数变大,C 正确。 3.A 解析:圆环受到向上的磁场力作用,说明穿过圆环的磁通量减少→线圈 ad 中的 电流减小→回路 abcd 中的感应电动势减小,而 E=ΔB Δt ·S,所以ΔB Δt 减小,故 A 正确。 4.B 解析:设 b 环的面积为 S,由题可知 a 环的面积为 4S,若 b 环的电阻为 R,则 a 环的电阻为 2R。 当 a 环置于磁场中时,a 环等效为内电路,b 环等效为外电路,A、B 两端的电压为路 端电压,根据法拉第电磁感应定律 E=ΔΦ Δt =4ΔBS Δt ,UAB= ER R+2R =4ΔBS 3Δt 当 b 环置于磁场中时 E′=ΔΦ Δt =ΔBS Δt UAB′=E′2R R+2R =2RΔBS 3RΔt =2ΔBS 3Δt 所以 UAB∶UAB′=2∶1,故 B 正确。 5.B 解析:当线圈进入磁场的过程中,由楞次定律可判断感应电流的方向为 a—d—c—b—a,与规定的电流正方向相反,所以电流值为负值,当线圈出磁场的过程中, 由楞次定律可判断感应电流的方向为 a—b—c—d—a,与规定的电流方向相同,所以电流值 为正值,又两种情况下有效切割磁感线的长度均不断增加,则感应电动势逐渐增大,感应电 流逐渐增大,所以 B 选项正确。 6.D 解析:K 闭合稳定后传感器上恰好无示数,说明此时下极板带正电,即下极板 电势高于上极板,极板间的电场强度方向向上,大小满足 Eq=mg,即 E=mg q ,又 U=Ed, 所以两极板间的电压 U=mgd q ;若将平行金属板换成一个电阻,则流过该电阻的感应电流的 方向是从下往上,据此结合楞次定律可判断出穿过线圈的磁通量正在增加,线圈中产生的感 应电动势的大小为 nΔΦ Δt ,根据 nΔΦ Δt =mgd q 可得ΔΦ Δt =mgd nq ,选项 D 正确。 7.D 解析:将开关由 1 拨到 2,电容器放电,导体棒向右加速运动切割磁感线,导体 棒中会产生感应电动势,这时导体棒相当于一个电源,导体棒下端是负极,上端是正极,当 电容器的电压降至与导体棒的感应电动势相等时,电容器不再放电,回路中不再有电流,导 体棒不再受安培力而匀速运动,所以最终状态是:电荷量不为零,电流为零,速度不为零, 加速度为零,选项 D 正确。 8.C 解析:t=0 时,E1=1 V,MN 间电压 UMN=3 4E=0.75 V,A 错误;由 v-t 图象可 知 t=1 s 到 t=3 s,线圈完全在匀强磁场中运动,加速度 a=0.5 m/s2,根据牛顿第二定律得: F=ma=1×0.5 N=0.5 N,B 错误;由 vt 图象可知线框进磁场和出磁场过程具有对称性,故 线框到达位置 3 时的瞬时速度为 2 m/s,C 正确,D 错误。 9.答案:(1)BL 2gh (2)3 4BL 2gh (3)m2gR2 2B4L4 解析:(1)cd 边刚进入磁场时,线框速度 v= 2gh, 线框中产生的感应电动势 E=BLv=BL 2gh。 (2)此时线框中的电流 I=E R , cd 两点间的电势差 U=I 3 4R =3 4E=3 4BL 2gh。 (3)安培力 F=BIL=B2L2 2gh R , 根据牛顿第二定律 mg-F=ma,因 a=0 解得线框下落高度 h=m2gR2 2B4L4 。 10.答案:(1)0.4 N (2)见解析图 解析:(1)4 s 时导体棒的速度是 v=2 t=4 m/s 感应电动势 E=BLv 感应电流 I= E R+r 此时导体棒受到的安培力 F 安=BIL=0.4 N (2)由(1)可得 I2= E R+r 2=4 BL R+r 2t=0.04t 作出图象如图所示。 11.答案:(1)18 N (2)2.0 m/s2 (3)4.12 J 解析:(1)由题图知, 杆运动的最大速度为 vm=4 m/s。 如图有 F=mgsin α+F 安=mgsin α+B2L2vm R ,代入数据得 F=18 N。 (2)由牛顿第二定律可得 F-F 安-mgsin α=ma, a= F-B2L2v R -mgsin α m , 代入数据得 a=2.0 m/s2。 (3)由题图可知 0.8 s 末金属杆的速度为 v1=2.2 m/s。前 0.8 s 内图线与 t 轴所包围的小方 格的个数约为 28 个。面积为 28×0.2×0.2=1.12,即前 0.8 s 内金属杆的位移 x=1.12 m。 由能量的转化和守恒定律得 Q=Fx-mgxsin α-1 2mv21, 代入数据得 Q=4.12 J。
查看更多

相关文章

您可能关注的文档