- 2021-06-02 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【物理】湖北省十堰市2019-2020学年高二上学期期末调研考试试题(解析版)
十堰市 2019~2020 学年度上学期期末调研考试 高二物理(2020 年 1 月) (本试题共 6 页,共 23 道题,满分 100 分,考试时间 90 分钟) 第Ⅰ卷 (选择题 共 54 分) 一、选择题(本题共 18 小题,每小题 3 分,共 54 分。每小题给出的四个选项中,有一项 或多项是符合题目要求的,选全对得 3 分,对而不全得 2 分,不选、错选得 0 分) 1.空中有两个点电荷,它们之间的库仑力的大小为 F。若将它们的距离减小为原来的 ,同 时将它们的电荷量均增大为原来的 2 倍,则它们之间的库仑力将变为( ) A. B. F C. 4F D. 16F 【答案】D 【解析】 【详解】根据库仑定律 ,若若将它们的距离减小为原来的 ,同时将它们的电 荷量均增大为原来的 2 倍,则 A. ,与结论不相符,选项 A 错误;B.F,与结论不相符,选项 B 错误; C.4F,与结论不相符,选项 C 错误;D.16F,与结论相符,选项 D 正确; 故选 D。 2.如图所示,在真空中,A、B 两点分别放置等量异种点电荷,在 A、B 两点间取一正八边形 路径 abcdefgha,其中心 O 与 A、B 连线的中点重合,ah⊥AB。下列说法正确的是( ) A. a 点和 d 点的电场强度相同 B. b 点和 c 点的电势相等 C. 电子在 f 点的电势能比在 g 点的电势能大 1 2 2 F 1 2 2 q qF k r = 1 2 ' 1 2 1 2 2 2 2 2 16 161( )2 q q q qF k k Frr ⋅= = = 2 F D. 将电子从 d 点沿直线移动到 e 点,电场力做负功 【答案】C 【解析】A.根据等量异种电荷 电场线分布,可知 a 点和 d 点的电场强度大小相等,但方 向不同,则电场强度不同;故 A 错误。 B.根据顺着电场线方向电势降低,知 b 点的电势比 c 点的电势高。故 B 错误。 C.f 点的电势比 g 点的电势低,电子从 f 点移动到 g 点,电场力做正功,电势能减小,则电 子在 f 点的电势能比在 g 点的电势能大。故 C 正确。 D.因 d 点和 e 点电势相等,则电子从 d 点到 e 点电势能不变,电场力做功为零,故 D 错误。 故选 C。 3.如图所示装置,从 A 板释放的一个无初速度电子向 B 板方向运动,下列电子的描述中错误 的是( ) A. 电子到达 B 板时的动能是 eU B. 电子从 B 板到 C 板时动能变化为零 C. 电子到达 D 板时动能是 3eU D. 电子在 A 板和 D 板之间往复运动 【答案】C 【解析】A.释放出一个无初速度电荷量为 e 的电子,在电压为 U 电场中被加速运动,当出 电场时,所获得的动能等于电场力做的功,即 eU,故 A 正确,不符合题意; B.由图可知,BC 间没有电压,则没有电场,所以电子在此处做匀速直线运动,则电子的 动能不变。故 B 正确,不符合题意; C.电子以 eU 的动能进入 CD 电场中,在电场力的阻碍下,电子作减速运动,由于 CD 间 的电压为 2U,所以电子的速度减为零后,还没有到达 D 板,就开始反向运动。故 C 错误, 符合题意; D.由上可知,电子将会在 A 板和 D 板之间加速、匀速再减速,回头加速、匀速再减速, 这样往复运动,故 D 正确,不符合题意;故选 C。 4.如图所示,竖直正对的平行板电容器带等量异种电荷,带正电的右板与静电计相连,左板 的 接地.假设两极板所带的电荷量不变,电场中 P 点固定一带正电的点电荷,下列说法正确 的是 A. 若仅将左板上移少许,则静电计指针偏角 变小 B. 若仅将左板右移少许,则静电计指针偏角 变小 C. 若仅将左板上移少许,则 P 点电势升高 D. 若仅将左板右移少许,则 P 的点电荷电势能增大 【答案】BC 【解析】A.两极板所带的电荷量不变,若仅将左板上移少许,根据 可知,电容 C 减小,由 可知,U 增大,所以静电计指针偏角 θ 增大,故 A 错误; B.若仅将左板右移少许,d 减小, 可知,电容 C 增大,由 可知,U 减小, 由则静电计指针偏角 θ 变小,故 B 正确; C.若仅将左板上移少许,根据 可知,电容 C 减小,由 可知,U 增大,由 可知,E 增大;左极板接地,由沿电场线的方向电势降低可知 P 点的电势为正,根 据 可得,P 点电势升高,故 C 正确; D.若仅将左板右移少许,两极板所带的电荷量不变,则 E 不变,根据 可得, P 点电势减小,则由 可得 P 的点电荷电势能减小,故 D 错误; 5.如图所示,在某电场中有 A、B 两点,某负电荷以一定的初速度从 A 点运动到 B 点。只考 虑电场力的作用。在电荷运动的过程中,下列说法正确的是( ) A. 电荷可能做直线运动 B. 电荷的加速度变小 θ θ 4 SC kd ε π= Q CU= 4 SC kd ε π= Q CU= 4 SC kd ε π= Q CU= UE d = ppU U Ed= =左 ppU U Ed= =左 pPE qϕ= C. 电荷的电势能变大 D. 电荷的动能变大 【答案】C 【解析】 【详解】A.负电荷在非匀强电场中运动,电场线为曲线,电荷不可能做直线运动,故 A 错 误; B.电场线的疏密表示场强的相对大小,则场强 EA<EB.电荷在 A 点的加速度较小,从 A 到 B 加速度增大,故 B 错误; C.根据顺着电场线电势降低,则知电势为:φA>φB.负电荷电势能随电势降低而增大,故 C 正确; D.根据能量守恒,电势能增大,动能减小,故 D 错误。 故选 C。 6.在图示电路中,P 为滑动变阻器的滑片,电表均为理想电表.下列说法正确的是 A. 在 P 向右移动的过程中,电流表的示数变大 B. 在 P 向右移动的过程中,电压表的示数变大 C. 当 P 移到滑动变阻器的右端时,电源内部消耗的电功率最大 D. 当 P 移到滑动变阻器的右端时,电源的效率最高 【答案】AC 【解析】 【详解】AB.滑动变阻器向右移动,电路总电阻减小,根据: 可知,电流表的示数变大,根据: 可知电压表的示数减小;故 A 正确,B 错误; CD.当 P 移到滑动变阻器的右端时,外电阻 R 最小,根据: EI R = 总 =E U Ir+ 可知,电路中的电流最大;根据: 可知此时电源内部消耗的电功率最大;故 C 正确;根据效率: 可知,此时的电源的效率最低,故 D 错误; 7.如图所示,A 为一水平旋转的橡胶圆盘,带有大量均匀分布的正电荷,在圆盘正上方水平 放置一通电直导线,电流方向已在图中标出。当圆盘绕中心轴 OO′按图示方向高速转动时, 通电直导线所受安培力的方向是( ) A. 竖直向上 B. 竖直向下 C 水平向外 D. 水平向里 【答案】C 【解析】 【详解】带正电圆盘如图转动时,从上向下看,形成顺时针方向的电流,根据右手螺旋定则 可知,在圆盘上方形成的磁场方向竖直向下,根据左手定则,伸开左手,让四指和电流方向 一致,磁感线穿过手心,则大拇指指向纸面外侧,因此安培力的方向水平向外。 A.竖直向上,与结论不相符,选项 A 错误;B.竖直向下,与结论不相符,选项 B 错误; C.水平向外,与结论相符,选项 C 正确;D.水平向里,与结论不相符,选项 D 错误; 故选 C。 8.如图所示,三根通电长直导线 P、Q、R 互相平行,垂直放置,其间距均为 a,通过的电流 均为 I,方向均垂直纸面向里。已知电流为 I 的长直导线产生的磁场中,到导线距离为 r 处 的磁感应强度为 (其中 k 为常量),则对于 P、Q 连线的中点 O 处的磁感应强度,下 . EI R = 总 2=P rI内 = 100%R R r η ×+ kIB r = 列说法正确的是( ) A. 方向由 O 指向 P,大小为 B. 方向由 P 指向 R,大小为 C. 方向由 R 指向 O,大小为 D. 方向由 O 指向 P,大小为 【答案】A 【解析】 【详解】P、Q 两根导线距离 O 点的距离相等,根据安培定则,在 O 点产生的磁场方向相反, 大小相等,合场强为零,所以最终场强等于 R 在 O 点产生的场强,根据安培定则,方向沿 OP 方向,R 到 O 点距离 ,那么磁感线强度的大小 A.方向由 O 指向 P,大小为 ,与结论相符,选项 A 正确; B.方向由 P 指向 R,大小为 ,与结论不相符,选项 B 错误; C.方向由 R 指向 O,大小为 ,与结论不相符,选项 C 错误; D.方向由 O 指向 P,大小为 ,与结论不相符,选项 D 错误; 故选 A。 9.质谱仪又称质谱计,是分离和检测不同同位素的仪器。某质谱仪的原理图如图所示,速度 选择器中匀强电场的电场强度大小为 E,匀强磁场的磁感应强度大小为 B1,偏转磁场(匀 强磁场)的磁感应强度大小为 B2。一电荷量为 q 的粒子在加速电场中由静止加速后进入速 度选择器,恰好能从速度选择器进入偏转磁场做半径为 R 的匀速圆周运动。粒子重力不计, 2 3 3 kI a 3 3 kI a 2 kI a 3 2 kI a 3 2r a= 2 3 3 kI kIB r a = = 2 3 3 kI a 3 3 kI a 2 kI a 3 2 kI a 空气阻力不计。该粒子的质量为( ) A. B. C. D. 【答案】A 【解析】 【详解】在速度选择器中做匀速直线运动的粒子能进入偏转磁场,由平衡条件得: qvB1=qE 粒子速度: 粒子在磁场中做匀速圆周运动,由牛顿第二定律得: 解得: A. ,与结论相符,选项 A 正确;B. ,与结论不相符,选项 B 错误; C. ,与结论不相符,选项 C 错误;D. ,与结论不相符,选项 D 错误; 故选 A。 10.如图所示,紧绕有闭合线圈的绝缘圆筒放在电子秤的非磁性材料托盘(图中未画出)上, 一条形磁铁(N 极向下)从圆筒正上方由静止释放后插入圆筒。空气阻力不计。对磁铁插入 圆筒且未碰到托盘的过程,下列说法正确的是( ) 1 2qB B R E 1 2 2 qB B R E 1 2 qB R B E 2 1 qB R B E 1 Ev B = 2 2 vqvB m R = 1 2qB B Rm E = 1 2qB B R E 1 2 2 qB B R E 1 2 qB R B E 2 1 qB R B E A. 磁铁的机械能守恒 B. 磁铁的加速度恒定 C. 通过电阻的电流方向如图中箭头所示 D. 电子秤的示数比磁铁尚未运动时电子秤的示数大 【答案】D 【解析】 【详解】A.磁铁下落过程中,线圈中会产生感应电流,机械能转化为电能,则磁铁的机械 能减小,选项 A 错误; B.磁铁下落过程中,穿过线圈的磁通量的变化率逐渐变大,则产生的感应电流逐渐变大, 磁铁受到的向上的安培力变大,则加速度会减小,选项 B 错误; C.根据楞次定律可知,通过电阻的电流方向如图中箭头反方向,选项 C 错误; D.磁铁下落过程中穿过线圈的磁通量变大,线圈中产生的感应电流的磁场方向向上,即落 线管上端为 N 及,则磁铁对螺线管有向下的作用力,则电子秤的示数比磁铁尚未运动时电 子秤的示数大,选项 D 正确; 故选 D。 11.如图所示,一个质量为 m、电荷量为 q 的带正电圆环,可在水平放置的足够长的粗糙细 杆上滑动,细杆处于磁感应强度为 B 的匀强磁场中。现使圆环以初速度 水平向右运动, 在以后的运动中,圆环克服摩擦力所做的功可能为(重力加速度为 g)( ) A. 0 B. 0v 3 2 2 22 m g B q C. D. 【答案】ACD 【解析】 【详解】由左手定则可知,圆环向右运动时受到向上的洛伦兹力; A.当 qv0B=mg 时,圆环不受支持力和摩擦力,摩擦力做功为零。故 A 正确。 C.当 qv0B<mg 时,圆环做减速运动到静止,只有摩擦力做功。根据动能定理得: 解得 故 C 正确。 D.当 qv0B>mg 时,圆环先做减速运动,当 qvB=mg 时,不受摩擦力,做匀速直线运动。 由 qvB=mg 可得:匀速运动的速度: 根据动能定理得: 解得: 故 D 正确。 B.由以上的分析可知,克服摩擦力做的功不可能为 ,故 B 错误; 故选 ACD。 12.如图所示,水平固定的光滑铜环,OO′为过圆心的竖直轴,长为 2l、电阻为 r 的铜棒 OA 的一端在 O 处,另一 端与铜环良好接触,OA 与 OO′的夹角为 30°,整个装置处在磁感应强 度大小为 B、方向竖立向上的匀强磁场中.现使铜捧 OA 绕 OO′以角速度 逆时针(俯视) 匀速转动,A 端始终在铜环上,定值电阻的阻值为 3r,其他电阻不计,下列说法正确的是 2 0 1 2 mv 3 2 2 0 2 2 1 2 2 m gmv B q − 2 0 10 2W mv− = − 2 0 1 2W mv= mgv qB = 2 2 0 1 1 2 2W mv mv− = − 3 2 2 0 2 22 1 2 m gW mv q B = − 3 2 2 22 m g B q ω A. O 点的电势比 A 点的电势低 B. 回路中通过的电流为 C. 该定值电阻两端的电压为 D. 该定值电阻上的热功率为 【答案】AC 【解析】 【详解】A.根据右手定则可知,O 点的电势比 A 点的电势低.故 A 正确. B.根据法拉第电磁感应定律可知,铜棒 OA 切割磁感线产生的感应电动势 E= ,所 以回路中通过的电流: I= 故 B 错误. C.该定值电阻两端的电压为:U= .故 C 正确. D.该定值电阻上的热功率 P= .故 D 错误. 13.如图所示,水平匀强磁场的理想边界 MN 和 PQ 均竖直,等腰直角三角形闭合导线框的 直角边恰好和磁场宽度相同。从线框右顶点刚进入磁场开始计时。若线框匀速通过磁场(线 框的一直角边与边界平行),取逆时针方向为感应电流的正方向,则下列四幅图中,能正确 反映线框中流过的电流随时间的变化关系的是( ) 2 4 Bl r ω 23 8 Blω 2 2 4 16 B l r ω 21 2 Blω 2 4 8 E Bl r r ω= 23 3 4 8 E Blω= 2 2 2 43 3 64 U B l r r ω= A. B. C. D. 【答案】D 【解析】 【详解】感应电流 ,线框做匀速直线运动,有效长度发生变化,电流就发生变化; 0- 时间内,由右手定则判断可知,感应电流方向沿逆时针方向,是正的,线框切割磁感线 的有效长度 l 均匀增加,则电流 I 均匀增加; ~ 时间内,由右手定则判断可知,感应电流方向沿顺时针方向,是负的,线框切割磁 感线的有效长度 l 均匀增加,则电流 I 均匀增加; A.该图与结论不相符,选项 A 错误;B.该图与结论不相符,选项 B 错误; C.该图与结论不相符,选项 C 错误;D.该图与结论相符,选项 D 正确;故选 D。 14.我国 2019 年年底将发射“嫦娥五号”,实现区域软着陆及采样返回,探月工程将实现“绕、 落、回”三步走目标.若“嫦娥五号”在月球表面附近落向月球表面的过程可视为末速度为零 的匀减速直线运动,则在此阶段,“嫦娥五号”的动能 与距离月球表面的高度 h、动量 p 与时间 t 的关系图象,可能正确的是 BLvI R = L v L v 2L v kE A. B. C. D. 【答案】B 【解析】 【详解】AB.若“嫦娥五号”在月球表面附近落向月球表面的过程可视为末速度为零的匀减 速直线运动,设在此阶段合力为恒力 F.由逆向思维,等效为由月球表面向上做匀加速直线 运动,由动能定理知: 整理得: 故 A 错误,B 正确. CD.同样由逆向思维法,等效为由月球表面向上做匀加速直线运动,由动量定理: 整理得: 故 CD 错误. 15.从同一高度的平台上,抛出三个完全相同的小球,甲球竖直上抛,乙球竖直下抛,丙球 平抛,三球落地时的速率相同,若不计空气阻力,则( ) A. 抛出时三球动量不都相同,甲、乙动量相同,并均小于丙的动量 B. 落地时三球的动量相同 C. 从抛出到落地过程,三球受到的冲量均不相同 D. 从抛出到落地过程,三球受到的冲量均相同 【答案】C 【解析】 【详解】A.根据动能定理知 0kFh E= − kE Fh= 0Ft p= − p Ft= 2 2 0 1 1 2 2mgh mv mv= − 可知三球落地时速度的大小相等,则三个小球抛出时的速度大小一定相等;故抛出时的动量 大小相等;故 A 错误; B.虽然落地时,三球的速度相同,动量的大小相等,但方向不同;故动量不相同;故 B 错 误; CD.三个小球以相同的速率抛出,可知竖直上抛运动的物体运动时间大于平抛运动的时间, 平抛运动的时间大于竖直下抛运动的时间,所以上抛运动的时间最长,根据动量定理知, mgt=△p,故三个小球受到的冲量都不相同;故 C 正确,D 错误; 故选 C。 16.如图甲所示,在匀强磁场中,一矩形金属线框绕与磁感线垂直的转轴匀速转动,产生的 交变电流的电压随时间变化的规律如图乙所示(正弦曲线)。下列说法正确的是( ) A. 该交变电流电压的最大值为 440V B. 该交变电流电压的有效值为 V C. 在 0. 0025s 时,该交变电流的电压为 220V D. 在 0. 0025s 时,该交变电流的电压为 V 【答案】C 【解析】 【详解】A.如图所示,该交变电流电压的最大值(峰值)为: Em=220 V≈311V 故 A 错误。 B.该交变电流电压的有效值为: 故 B 错误。 220 2 110 2 2 220V 2 mEE = = CD.因为 交变电流的电压的函数表达式为: 当 t=0.0025s 时 故 C 正确,D 错误。 故选 C。 17.如图所示,一理想变压器原、副线圈的匝数之比为 4:1,a、b 间接有电压瞬时值表达式 为 (V)的正弦交变电流,灯泡 L1、L2 的额定功率相同且恰好都正常 发光。该理想电压表的示数为( ) A. 27. 5V B. 44V C. 110V D. 220V 【答案】C 【解析】 【详解】由理想变压器的变流比关系可知,通过灯泡 L1、L2 的电流之比为 由于灯泡 L1、L2 的额定功率相同且恰好都正常发光,故灯泡 L1、L2 两端的电压之比为 又由理想变压器的变压比关系可知,变压器原副线圈的电压之比为 且 U1+UL1=220V 2 2 rad/s=100πrad/s0.02T π πω = = 220 2 100 Ve sin tπ= ( ) 220 2 V 220V4e sin π= = 220 2 sin100e tπ= 1 2 2 1 1 4 I n I n == 1 2 4 1 L L U U = 1 1 2 2 4 1 U n U n = = U2=UL2 解得 U1=110V 所以电压表的示数为 110V。 A.27. 5V,与结论不相符,选项 A 错误;B.44V,与结论不相符,选项 B 错误; C.110V,与结论相符,选项 C 正确;D.220V,与结论不相符,选项 D 错误;故选 C。 18.如图所示,一单匝闭合矩形金属线圈 abcd 在匀强磁场中绕垂直于磁场方向的转轴 OO′匀 速转动,转轴 OO′过 ad 边和 bc 边的中点。从图示位置开始计时,穿过线圈的磁通量 随 时间 t 的变化关系式为 (Wb),时间 t 的单位为 s。已知矩形线圈的电阻为 2. 0 ,下列说法正确的是( ) A. 穿过线圈 磁通量的最大值为 Wb B. 在任意 1s 时间内,线圈中通过的电流的方向改变 20 次 C. 线圈中通过的电流的有效值约为 3. 14A D. 在任意 1s 时间内,线圈克服安培力所做的功约为 9. 86J 【答案】BD 【解析】 【详解】A.由表达式可知,穿过线圈的磁通量的最大值为 BS=0.1Wb,故 A 错误; B.周期 ,一个周期内电流方向改变两次,故在任意 1s 时间内,线圈中电 流的方向改变 20 次,故 B 正确; C.转动的角速度为 ω=20πrad/s,产生的感应电动势最大值为 Em=NBSω=2πV 电动势的有效值为 E= πV 的 Φ 0.1cos20πΦ = t Ω 2 10 2 0.120T s π π= = 2 线圈中电流的有效值为 故 C 错误; D.在任意 l s 时间内,线圈克服安培力所做的功 故 D 正确;故选 BD。 第Ⅱ卷 (非选择题 共 46 分) 二、实验题(3 分+9 分=12 分) 19.某同学用多用电表测量某电阻 阻值 R,他将多用电表的选择开关旋转到欧姆挡的 “×100”位置,进行欧姆调零后用正确的测量方法进量,结果刻度盘上的指针位置如图所示, 可知 R=________k 。 【答案】3 【解析】 [1].由表盘刻度可知,R=30×100Ω=3k . 20.某物理兴趣小组利用图甲所示电路测定一节干电池的电动势和内阻。除电池(内阻约为 0. 3 )、开关和导线外,实验室提供的器材还有: A. 电压表 V(量程为 3V,内阻约为 3k ) B. 电流表 A1(量程为 0. 6A,内阻约为 0. 2 ) C. 电流表 A2(量程为 3A,内阻约为 0. 05 ) 的 2 A 2 EI R π= = 2 22 1J 9.86J 2 ( )EW tR π= = × ≈ Ω Ω Ω Ω Ω Ω D. 定值电阻(阻值为 1. 5 ,额定功率为 2W) E. 定值电阻(阻值为 20 ,额定功率为 10W) F. 滑动变阻器(最大阻值为 15 ,额定电流为 2A)。 (1)电流表应选用________(选填“B”或“C”),R0 应选用________(选填“D”或“E”)。 (2)实验时,闭合开关 S 前,应将滑动变阻器的滑动触头 P 置于_____(选填“a”或“b”)端。 (3)在器材选择正确的情况下,按正确操作进行实验,调节滑动变阻器,通过测量得到该 电池的 U-I 图线如图乙所示,则该电池的电动势 E=________V、内阻 r=________ 。 【答案】 (1). B D (2). b (3). 1. 48 0. 46 【解析】 【详解】(1)[1][2].估算电流时,考虑到干电池的内阻 0.3Ω 左右,保护电阻选择与内阻相 当的定值电阻 D 即可;这样加上保护电阻,最大电流控制在 0.5A 左右,所以选量程为 0.6A 的电流表,故选 B; (2)[3].实验时,闭合开关 S 前,应将滑动变阻器的滑动触头 P 置于阻值最大的 b 端。 (3)[4][5].根据闭 U-I 图象可知,与 U 轴的交点表示电动势,所以 E=1.48V,图象的斜率 表示内电阻与保护电阻之和,故 解得 r=0.46Ω; 三、计算题(10 分+12 分+12 分=34 分) 21.如图所示,一质量为 m/3 的人站在质量为 m 的小船甲上,以速度 v0 在水面上向右运 动.另一完全相同小船乙以速率 v0 从右方向左方驶来,两船在一条直线上运动.为避免两 船相撞,人从甲船以一定的速率水平向右跃到乙船上,求:为能避免两船相撞,人水平跳出 时相对于地面的速率至少多大? 【答案】 【解析】 【详解】设向右为正,两船恰好不相撞,最后具有共同速度 v1,由动量守恒定律: Ω Ω Ω Ω 0 1.48 0.50 1.960.50r R −+ = = Ω 2 0 25 7v v= 解得: 设人跳出甲船的速度为 v2,人从甲船跃出的过程满足动量守恒定律: 解得: 22.如图所示,空间存在竖直向上的匀强磁场,磁感应强度 B=0.50T,两条光滑的平行金属 导轨固定在同一水平面内,导轨间距 l=0.40m,左端接有阻值 R=0.40Ω 的电阻.一质量 m=0.10kg、阻值 r=0.10Ω 的金属棒 MN 放置在导轨上.金属棒在水平向右的拉力 F 作用下, 沿导轨做速度 v=2.0m/s 的匀速直线运动.求: (1)通过电阻 R 的电流 I; (2)拉力 F 的大小; (3)撤去拉力 F 后,电阻 R 上产生的焦耳热 Q. 【答案】(1)0.80A(2)0.16N (3)0.16J 【解析】 【详解】(1)感应电动势 V 通过电阻 R 的电流 A (2)金属棒受到的安培力 N 根据牛顿第二定律有 所以 N (3)撤去拉力 F 后,金属棒做减速运动并最终静止,金属棒的动能全部转化为回路中的焦 耳热.在这段过程中,根据能量守恒定律有 所以 J 0 0 1( ) (2 )3 3 m mm v mv m v+ ⋅ − = + 1 0 1 7v v= 0 1 2( )3 3 m mm v m v v+ = ⋅ + 2 0 25 7v v= v 0.40E Bl= = 0.80EI R r = =+ A 0.16F BIl= = 0AF F− = 0.16F = 21 v2 m Q= 总 0.16RQ QR r = =+ 总 23.如图所示,在直角坐标系 xOy 中,板间距离为 d 的正对金属板 M、N 上有两个小孔 S、 K,S、K 均在 y 轴(竖直)上。在以原点 O 为圆心、以 R 为半径的圆形区域内存在方向垂 直纸面向外的匀强磁场,圆 O 与 M 板相切于 S、与 x 负半轴相交于 C 点。小孔 K 处的灯丝 不断地逸出质量为 m、电荷量为 e 的电子(初速度和重力均不计),电子在两板间的电场作 用下沿 y 轴正方向运动。当 M、N 间的电压为 时,从小孔 K 逸出的电子恰好通过 C 点。 (1)求电子到达小孔 S 处时的速度大小 ; (2)求磁场的磁感应强度大小 B; (3)若 M、N 间的电压增大为 ,求从小孔 K 逸出的电子离开磁场时的位置 D(图中未 画)的坐标。 【答案】(1) (2) (3) 【解析】 【详解】(1)电子的运动轨迹如图所示,在电子从小孔 K 运动到小孔 S 的过程中,根据动 能定理有: 0U 0v 03U 0 0 2eUv m = 021 mUB R e = 3 1,2 2R R − 解得: (2)当电子恰好通过 C 点时,根据几何关系可得电子在磁场中 轨道半径为: 洛伦兹力提供电子做圆周运动所需的向心力,有: 解得: (3)设此种情况下电子到达小孔 S 处时的速度大小为 v,根据动能定理有: 设此种情况下电子在磁场中的轨道半径为 ,有: 解得: 设 O、D 两点连线与 y 轴的夹角为 θ,由几何关系知,此种情况下电子从小孔 S 运动到 D 点 的轨迹(圆弧)对应的圆心角为: 由几何关系有: 解得: 故 D 点的位置坐标为 ,即 的 2 0 0 1 2e mvU = 0 0 2eUv m = 1r R= 2 0 0 1 vev B m r = 021 mUB R e = 2 0 13 2e U mv× = 2r 2 2 vevB m r = 06eUv m = 2 3r R= α θ= 2 2cos sinr R rα θ+ = 3 πα θ= = ( sin , cos )R Rθ θ− 3 1,2 2R R − 查看更多