- 2021-06-01 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【物理】2020届一轮复习人教版第四章三类典型的圆周运动问题作业
(二十四) 三类典型的圆周运动问题 作业 1.(2019·汕头模拟)如图甲所示,轻绳一端固定在O点,另一端系住一小球在竖直面内做圆周运动,小球经过最高点时的速度大小为v,此时轻绳的拉力大小为FT。拉力FT与速度的平方v2的关系如图乙所示,图像中的数据a和b以及重力加速度g都为已知量。下列说法正确的是( ) A.数据a与小球的质量有关 B.数据b与圆周轨道半径有关 C.比值只与小球的质量有关,与圆周轨道半径无关 D.利用数据a、b和g能够求出小球的质量和圆周轨道半径 解析:选D 在最高点时对小球受力分析,由牛顿第二定律有FT+mg=m,可得FT=m-mg,对照题图乙则有0=m-mg,得g=,则a=gR;图线过点(2a,b),则b=m-mg,得b=mg,则=,A、B、C错误;由b=mg得m=,由a=gR得R=,D正确。 2.(2019·儋州四校联考)如图所示,轻杆长为L,一端固定在水平轴上的O点,另一端系一个小球(可视为质点)。小球以O为圆心在竖直平面内做圆周运动,且能通过最高点,重力加速度为g。下列说法正确的是( ) A.小球通过最高点时速度可能小于 B.小球通过最高点时所受轻杆的作用力不可能为零 C.小球通过最高点时所受轻杆的作用力随小球速度的增大而增大 D.小球通过最高点时所受轻杆的作用力随小球速度的增大而减小 解析:选A 小球在最高点时,轻杆对小球可以表现为支持力,由牛顿第二定律得mg-F=m,则v<,故A正确;当小球速度为时,由重力提供向心力,轻杆的作用力为零,故B错误;小球通过最高点时轻杆对小球的作用力可以表现为拉力,此时根据牛顿第二定律有mg+F=m,则知v越大,F越大,即随小球速度的增大,轻杆的拉力增大,小球通过最高点时轻杆对小球的作用力也可以表现为支持力,当表现为支持力时,有mg-F=m,则知v越大,F越小,即随小球速度的增大,轻杆的支持力减小,故C、D错误。 3.如图所示,一根细线下端拴一个金属小球A,细线的上端固定在金属块B上,B放在带小孔的水平桌面上,小球A在某一水平面内做匀速圆周运动。现使小球A改到一个更低一些的水平面上做匀速圆周运动(图上未画出),金属块B在桌面上始终保持静止。则后一种情况与原相比较,下列说法中正确的是( ) A.金属块B受到桌面的静摩擦力变大 B.金属块B受到桌面的支持力变小 C.细线的张力变大 D.小球A运动的角速度变小 解析:选D 设小球A、金属块B的质量分别为m、M,细线的拉力为T,小球A做匀速圆周运动的向心加速度为a,细线与竖直方向的夹角为θ,对金属块B研究,金属块B受到的摩擦力f=Tsin θ,对小球A,有Tsin θ=ma,Tcos θ=mg,解得a=gtan θ,当A改到一个更低一些的水平面上做匀速圆周运动时,θ变小,a减小,T减小,则金属块B受到桌面的静摩擦力变小,故A、C错误;以整体为研究对象知,金属块B受到桌面的支持力大小不变,应等于(M+m)g,故B错误;设细线长为l,则a=gtan θ=ω2lsin θ,ω= ,θ变小,ω变小,故D正确。 4.(2019·太原模拟)如图所示,圆弧形凹槽固定在水平地面上,其中ABC是以O为圆心的一段圆弧,位于竖直平面内。现有一小球从水平桌面的边缘P点向右水平飞出,该小球恰好能从A点沿圆弧的切线方向进入轨道。OA与竖直方向的夹角为θ1,PA与竖直方向的夹角为θ2。下列说法正确的是( ) A.tan θ1·tan θ2=2 B.=2 C.tan θ1·tan θ2= D.= 解析:选A 小球从水平桌面飞出后做平抛运动,由平抛运动的规律知,在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,小球在A点时速度与水平方向的夹角为θ1,tan θ1==,位移与竖直方向的夹角为θ2,tan θ2===,则tan θ1·tan θ2=2。故A正确,B、C、D错误。 5.如图所示,水平圆盘可绕通过圆心的竖直轴转动,盘上放两个小物体P和Q,它们的质量相同,与圆盘的最大静摩擦力都是fm。两个物体之间用一根细线连接,细线过圆心O,P离圆心距离为r1,Q离圆心距离为r2,且r1<r2 。两个物体随圆盘以角速度ω匀速转动,且两个物体始终与圆盘保持相对静止,则( ) A.ω取不同值时,P和Q所受静摩擦力均指向圆心 B.ω取不同值时,Q所受静摩擦力始终指向圆心,而P所受静摩擦力可能指向圆心,也可能背离圆心 C.ω取不同值时,P所受静摩擦力始终指向圆心,而Q所受静摩擦力可能指向圆心,也可能背离圆心 D.ω取不同值时,P和Q所受静摩擦力可能都指向圆心,也可能都背离圆心 解析:选B 设P、Q质量均为m,当角速度ω较小时,做圆周运动的向心力均由圆盘对其的静摩擦力提供,细线伸直但无张力。当mω2r=fm即ω= 时,若再增大ω,则静摩擦力不足以提供做圆周运动所需的向心力,细线中开始出现张力,不足的部分由细线中张力提供,由于r1查看更多
相关文章
- 当前文档收益归属上传用户