- 2021-06-01 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
第18章第05节光的二象性教案03 人教版
光的微粒说和波动说 一、教学目标 1.物理知识方面. (1)了解微粒说的基本观点及对光学现象的解释和所遇到的问题. (2)了解波动说的基本观点及对光学现象的解释和所遇到的问题. 2.物理思想方面. 人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的. 二、重点、难点分析 这一章的内容,贯穿一条主线——人类对光的本性的认识的发展过程.结合各节内容,适当穿插物理学史材料是必要的.这种做法不但可使课堂教学主动活泼,内容丰富,还可以对学生进行唯物辩证思想教育.本节就课本内容,十分简单,学生学起来十分枯燥.课本所提到的内容,都是结论性的,加入一些史料不仅可能而且必要. 三、主要教学过程 光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究. 到了17世纪,人类对光的本性的认识逐渐形成了两种学说. (-)光的微粒说 一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的. 在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论. 说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这 时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行. 一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔”’.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了. (二)光的波动说 关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像 穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过. 惠更斯用波动说还解释了光的反射和折射.但他在解释光自光疏介质射向光密介质的近法线折射时,需假设光在光密介质中的传播速度较小.现代光速的测定表明,波动说在解释折射时依据的假设是正确的:光在光密介质中传播时光速较小.但在17世纪时,光速的测量尚在起步阶段,谁是谁非,没有定论. 当然,光的波动说在解释光的直进性和何以能在传播时,会在不透明物体后留下清晰的影子等问题也遇到困难. 可见,光的微粒说和波动说在解释光学现象时,都各有成功的一面,但都不能完满地解释当时所了解的各种光学现象. 在其后的100多年中,主要由于牛顿的崇高地位及声望,因而微粒说一直占主导地位,波动说发展很缓慢.人类对光本性的认识,还期待新的现象的发现.直到19世纪初,人们发现了光的干涉现象,进一步研究了光的衍射现象.干涉和衍射是波动的重要特征,从而光的波动说得到迅速发展.人类对光的本性的认识达到一个新的阶段. (三)牛顿理论中的波动性思想 作为一代物理学大师的牛顿,是提倡了微粒说,但他却并不排斥波动说.他根据他所做过的大量实验和统密的思考,提出了不少卓越的、富有启发性的思想.在关于颜色的见解上,他提出“不同种类的光线,是否引起不同大小的振动,并按其大小而激起不同的颜色感觉,正像空气的振动按其大小而激起不同的声音感觉一样?而且是否特别是那些最易折射的光线激起最短的振动以造成深紫色的感觉,最不易折射的光线激起最长的振动,以造成深红色的感觉,而介 于两者之间的各种光线激起各种中间大小的振动而造成中间颜色的感觉?” 他同时还提出:“扔一块石头到平静的水面中,由此激起的水波将在石头落水的地方持续一段时间,并从这里以同心圆的形式在水面上向远处传播.空气用力撞击所激起的振动和颤动也将持续少许时间,并从撞击处以同心球的形式传播到远方.与此相似,当光线射到任何透明体的表面并在那里折射或反射时,是不是因此就要在反射或折射介质中人射点的地方,激起振动和颤动的波,而且这种振动总能在那里发生并从那里传播出去.” 在解释光现象中,牛顿还多次提出了周期性的概念.而具有周期性,也是波动的一个重要特征.提出波动说的惠更斯却否认振动或波动的周期性.因此,对牛顿来说,在他的微粒说理论中包含有波动说的合理因素.究竟谁是谁非,牛顿认为“我只是对尚待发现的光和它对自然结构的那些效果开始作了一些分析,对它作了几点提示,而把这些提示留待那些好奇的人们进一步去用实验和观察来加以证明和改进.”牛顿的严谨,兼收并蓄的科学态度是值得我们学习的,恐怕这也是他成为物理学大师的原因之一. 四、教学说明 人类对自然的探索精神,是激励学生学习的动力.自本节起,其后的物理各章节中,包含了大量的物理学史内容.充分利用这些宝贵资料,恰当结合教材内容,既能充分激发学生学习兴趣,又可以自然地对学生进行辩证唯物主义思想教育,以利于对学生的科学素质和创造性精神的培养. (北京四中 陶澄)查看更多