- 2021-05-27 发布 |
- 37.5 KB |
- 20页
![](https://data.61taotao.com/file-convert/2020/10/19/14/08/f7b69b06e325199591f56cd99e7c5f06/img/1.jpg)
![](https://data.61taotao.com/file-convert/2020/10/19/14/08/f7b69b06e325199591f56cd99e7c5f06/img/2.jpg)
![](https://data.61taotao.com/file-convert/2020/10/19/14/08/f7b69b06e325199591f56cd99e7c5f06/img/3.jpg)
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
河北省张家口市万全中学2017届高三上学期第一次月考物理试卷
2016-2017学年河北省张家口市万全中学高三(上)第一次月考物理试卷 一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1-8题只有一项符合题目要求;9-12题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.) 1.如图所示,质量为m的木块A放在质量为M的三角形斜壁上,现用大小均为方向相反的水平力分别推A和B,它们均静止不动.则( ) A.地面对B的支持力大小一定大于(M+m)g B.B与地面之间一定不存在摩擦力 C.B对A的支持力一定小于mg D.A与B之间一定存在摩擦力 2.如图所示,将一轻弹簧固定在倾角为30°的斜面底端,现用一质量为m的物体将弹簧压缩锁定在A点,解除锁定后,物体将沿斜面上滑,物体在运动过程中所能到达的最高点B距A点的竖直高度为h,已知物体离开弹簧后沿斜面向上运动的加速度大小等于重力加速度g.则下列说法不正确的是( ) A.当弹簧恢复原长时,物体有最大动能 B.弹簧的最大弹性势能为2mgh C.物体最终会静止在B点位置 D.物体从A点运动到静止的过程中系统损失的机械能为mgh 3.一个物体静止在质量均匀的星球表面的“赤道”上.已知引力常量G,星球密度ρ.若由于星球自转使物体对星球表面的压力恰好为零,则该星球自转的周期为( ) A. B. C.ρGπ D. 4.在杂技表演中,猴子沿竖直杆向上做初速度为零、加速度为a的匀加速运动,同时人顶着直杆以速度v0水平匀速移动,经过时间t,猴子沿杆向上移动的高度为h,人顶杆沿水平地面移动的距离为x,如图所示.关于猴子的运动情况,下列说法中正确的是( ) A.相对地面的运动轨迹为直线 B.相对地面做匀变速直线运动 C.t时刻猴子对地速度的大小为v0+at D.t时间内猴子对地的位移大小为 5.如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β,且α<β,ab为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的.现使a、b同时沿斜面下滑,则下列说法正确的是( ) A.楔形木块向左运动 B.楔形木块向右运动 C.a木块处于超重状态 D.b木块处于失重状态 6.汽车以额定功率在平直公路上匀速行驶,在t1时刻突然使汽车的功率减小一半,并保持该功率继续行驶,到t2时刻汽车又开始做匀速直线运动(设汽车所受阻力不变),则在t1~t2时间内( ) A.汽车的加速度保持不变 B.汽车的加速度逐渐减小 C.汽车的速度先减小后增大 D.汽车的速度先增大后减小 7.如图所示,质量均为m的小球A、B用两根不可伸长的轻绳连接后悬挂于O点,在外力F的作用下,小球A、B处于静止状态.若要使两小球处于静止状态,且悬线OA与竖直方向的夹角θ保持30°不变,则外力F的大小不可能为( ) A.0.5mg B.mg C.2mg D.5mg 8.如图所示,在M点分别以不同的速度将两小球水平抛出.两小球分别落在水平地面上的P点、Q点.已知O点是M点在地面上的竖直投影,OP:PQ=1:3,且不考虑空气阻力的影响.下列说法中正确的是( ) A.两小球的下落时间之比为1:3 B.两小球的下落时间之比为1:4 C.两小球的初速度大小之比为1:3 D.两小球的初速度大小之比为1:4 9.如图,A为置于地球赤道上的物体,B为绕地球做椭圆轨道运行的卫星,C为绕地球做圆周运动的卫星,P为B、C两卫星轨道的交点.已知A、B、C绕地心运动的周期相同.相对于地心,下列说法中正确的是( ) A.卫星C的运行速度小于物体A的速度 B.卫星B在P点的加速度大小与卫星C在该点加速度大小相等 C.卫星B运动轨迹的半长轴与卫星C运动轨迹的半径相等 D.物体A和卫星C具有相同大小的加速度 10.如图,两个半径不同而内壁光滑的半圆轨道固定于地面,一个小球(可以视为质点)先后从与球心在同一水平高度的A、B两点由静止开始自由下滑,通过轨道最低点时( ) A.小球对轨道的压力相同 B.小球对两轨道的压力不同 C.此时小球的向心加速度不相等 D.此时小球的机械能相等 11.实验小组为了探究物体在倾角不同的斜面上的运动情况,将足够长的粗糙木板的一端固定在水平地面上,使物体以大小相同的初速度v0由底端冲上斜面,每次物体在斜面上运动过程中斜面倾角θ保持不变.在倾角θ从0°逐渐增大到90°的过程中( ) A.物体的加速度先减小后增大 B.物体的加速度先增大后减小 C.物体在斜面上能达到的最大位移先增大后减小 D.物体在斜面上能达到的最大位移先减小后增大 12.2015年人类首次拍摄到冥王星的高清图片,为进一步探索太阳系提供了宝贵的资料,冥王星已被排除在地球等八大行星行列之外,它属于“矮星行”,表面温度很低,上面绝大多数物质只能是固态或液态,已知冥王星的质量远小于地球的质量,绕太阳的公转的半径远大于地球的公转半径.根据以上信息可以确定( ) A.冥王星公转的周期一定大于地球的公转周期 B.冥王星的公转速度一定小于地球的公转速度 C.冥王星表面的重力加速度一定小于地球表面的重力加速度 D.冥王星上的第一宇宙速度一定小于地球上的第一宇宙速度 二、实验题(共2小题,共14分)本题请将解答填在答题卡相应的位置. 13.如图,气垫导轨上滑块的质量为M,钩码的质量为m,遮光条宽度为d,两光电门间的距离为L,气源开通后滑块在牵引力的作用下先后通过两个光电门的时间为△t1和△t2.当地的重力加速度为g (1)用上述装置测量滑块加速度的表达式为 (用已知量表示); (2)用上述装置探究滑块加速度a与质量M及拉力F的关系,要使绳中拉力近似等于钩码的重力,则m与M之间的关系应满足 ; (3)用上述装置探究系统在运动中的机械能关系,滑块从光电门1运动到光电门2的过程中满足关系式 时(用已知量表示),系统机械能守恒.若测量过程中发现系统动能增量总是大于钩码重力势能的减少量,可能的原因是 . 14.某实验小组利用图1所示的装置探究加速度与力、质量的关系. ①下列做法正确的是 (填字母代号) A.调节滑轮的高度,使牵引木块的细绳与长木板保持平行 B.在调节木板倾斜度平衡木块受到的滑动摩擦力时,将装有砝码的砝码桶通过定滑轮拴在木块上 C.实验时,先放开木块再接通打点计时器的电源 D.通过增减木块上的砝码改变质量时,不需要重新调节木板倾斜度 ②甲、乙两同学在同一实验室,各取一套图2所示的装置放在水平桌面上,木块上均不放砝码,在没有平衡摩擦力的情况下,研究加速度a与拉力F的关系,分别得到图2中甲、乙两条直线.设甲、乙用的木块质量分别为m甲、m乙,甲、乙用的木块与木板间的动摩擦因数分别为μ甲、μ乙,由图可知,m甲 m乙,μ甲 μ乙.(选填“大于”、“小于”或“等于”) 三、计算题:共3小题,共32分.应写出必要的文字说明、方程式和重要演算步骤, 15.如图所示,静止放在水平光滑的桌面上的纸带,其上有一质量为m=0.5kg的铁块,它与纸带右端的距离为L=0.5m,铁块与纸带间的动摩擦因数为μ=0.2.现用力F水平向左将纸带从铁块下抽出,当纸带全部抽出时铁块恰好到达桌面边缘,铁块抛出后落地点离抛出点的水平距离为x=0.8m.已知g=10m/s2,桌面高度为H=0.8m,不计纸带质量,不计铁块大小,铁块不翻滚.求: (1)铁块抛出时速度大小v; (2)纸带从铁块下抽出所用时间t. 16.在操场400m标准跑道上有相距l=21m的甲、乙两名同学,如图所示.甲同学以4m/s的速率绕操场逆时针慢跑.乙同学开始处于静止状态,他加速的最大加速度为1m/s2,最大速度为5m/s.乙同学想在最短时间内与甲同学相遇,试通过计算判断乙同学应该顺时针运动还是逆时针运动.(假设乙同学在直道部分加速) 17.某电视台闯关竞技节目的第一关是雪滑梯,其结构可以简化为下图模型,雪滑梯顶点距地面高h=15m,滑梯斜面部分长l=25m,在水平部分距离斜道底端为x0=20m处有一海绵坑.比赛时参赛运动员乘坐一质量为M的雪轮胎从赛道顶端滑下,在水平雪道上某处翻离雪轮胎滑向海棉坑,运动员停在距离海绵坑1m范围内算过关.已知雪轮胎与雪道间的动摩擦因数μ1=0.3,运动员与雪道间动摩擦因数为μ2=0.8,假没运动员离开雪轮胎的时间不计,运动员落到雪道上时的水平速度不变,求质量为m的运动员(可视为质点)在水平雪道上的什么区域离开雪轮胎才能闻关成功. 2016-2017学年河北省张家口市万全中学高三(上)第一次月考物理试卷 参考答案与试题解析 一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1-8题只有一项符合题目要求;9-12题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.) 1.如图所示,质量为m的木块A放在质量为M的三角形斜壁上,现用大小均为方向相反的水平力分别推A和B,它们均静止不动.则( ) A.地面对B的支持力大小一定大于(M+m)g B.B与地面之间一定不存在摩擦力 C.B对A的支持力一定小于mg D.A与B之间一定存在摩擦力 【考点】共点力平衡的条件及其应用;力的合成与分解的运用. 【分析】先对A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;再对物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力. 【解答】解:A、将A、B看成整体,竖直方向上受力平衡,则可知地面对B的支持力的大小一定等于(M+m)g,故A错误; B、将A、B看成整体,由于平衡合力为零,故B与地面之间无摩擦力,故B正确; C、对A分析作出对应的受力分析图如图所示; 根据平衡条件可知,支持力等于重力和推力在垂直斜面上的分力,由于不明确F的大小,故无法确定支持力与重力的关系; 故C错误; D、由图可知,若重力和推力在沿斜面方向上的分力相同,则物体A可以不受B的摩擦力,故D错误. 故选:B 2.如图所示,将一轻弹簧固定在倾角为30°的斜面底端,现用一质量为m的物体将弹簧压缩锁定在A点,解除锁定后,物体将沿斜面上滑,物体在运动过程中所能到达的最高点B距A点的竖直高度为h,已知物体离开弹簧后沿斜面向上运动的加速度大小等于重力加速度g.则下列说法不正确的是( ) A.当弹簧恢复原长时,物体有最大动能 B.弹簧的最大弹性势能为2mgh C.物体最终会静止在B点位置 D.物体从A点运动到静止的过程中系统损失的机械能为mgh 【考点】功能关系;弹性势能. 【分析】物体离开弹簧后沿斜面向上运动的加速度大小等于重力加速度g,可得知斜面不光滑,物体将受到沿斜面向下的摩擦力,且摩擦力大小为重力的一半;物体动能最大时,加速度为零;系统弹性势能最大时,弹簧压缩量最大.应用能量守恒的观点加以全程分析. 【解答】解:A、物体离开弹簧后沿斜面向上运动的加速度大小等于重力加速度g,由牛顿第二定律得知:物块所受的合力沿斜面向下,大小为 F=mg,而重力沿斜面向下的分量为mgsin30°=mg,可知,物块必定受到沿斜面向下的摩擦力为f=mg.物体从弹簧解除锁定开始,弹簧的弹力先大于重力沿斜面向下的分力和摩擦力之和,后小于重力沿斜面向下的分力和摩擦力之和,物体先做加速后做减速运动,当弹力等于重力沿斜面向下的分力和摩擦力之和时,速度最大,此时弹簧处于压缩状态,故A不正确; B、根据能量守恒定律,知在物块上升到最高点的过程中,弹性势能变为物块的重力势能mgh和内能,故弹簧的最大弹性势能Ep=mgh+f•2h=2mgh,故B正确. C、由于物体到达B点后,瞬时速度为零,由于最大摩擦力 fm=f=mg=mgsin30°,所以物块将静止在B点,故C正确. D、物体从A点运动到静止的过程中系统损失的机械能等于克服摩擦力做的功,为△E=f•2h=mgh,故D正确. 本题选不正确的,故选:A 3.一个物体静止在质量均匀的星球表面的“赤道”上.已知引力常量G,星球密度ρ.若由于星球自转使物体对星球表面的压力恰好为零,则该星球自转的周期为( ) A. B. C.ρGπ D. 【考点】万有引力定律及其应用. 【分析】赤道上随行星一起转动的物体对行星表面的压力恰好为零,说明此时万有引力提供向心力,根据万有引力等于向心力和密度公式联立即可解题. 【解答】解:设某行星质量为M,半径为R,物体质量为m,万有引力充当向心力,则有: 其中 联立解得: 故选:A 4.在杂技表演中,猴子沿竖直杆向上做初速度为零、加速度为a的匀加速运动,同时人顶着直杆以速度v0水平匀速移动,经过时间t,猴子沿杆向上移动的高度为h,人顶杆沿水平地面移动的距离为x,如图所示.关于猴子的运动情况,下列说法中正确的是( ) A.相对地面的运动轨迹为直线 B.相对地面做匀变速直线运动 C.t时刻猴子对地速度的大小为v0+at D.t时间内猴子对地的位移大小为 【考点】运动的合成和分解. 【分析】A、猴子参与了水平方向上的匀速直线运动和竖直方向上的匀加速直线运动,通过运动的合成,判断猴子相对于地面的运动轨迹以及运动情况. C、求出t时刻猴子在水平方向和竖直方向上的分速度,根据平行四边形定则,求出猴子相对于地面的速度,即合速度. D、分别求出猴子在t时间内水平方向和竖直方向上的位移,根据平行四边形定则,求出猴子的合位移. 【解答】解:A、猴子在水平方向上做匀速直线运动,在竖直方向上做初速度为0的匀加速直线运动,根据运动的合成,知合速度与合加速度不在同一条直线上,所以猴子运动的轨迹为曲线.故A错误. B、猴子在水平方向上的加速度为0,在竖直方向上有恒定的加速度,根据运动的合成,知猴子做曲线运动的加速度不变,做匀变速曲线运动.故B错误. C、t时刻猴子在水平方向上的速度为v0,和竖直方向上的分速度为at,所以合速度v=.故C错误. D、在t时间内猴子在水平方向和竖直方向上的位移分别为x和h,根据运动的合成,知合位移s=.故D正确. 故选:D. 5.如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β,且α<β,ab为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的.现使a、b同时沿斜面下滑,则下列说法正确的是( ) A.楔形木块向左运动 B.楔形木块向右运动 C.a木块处于超重状态 D.b木块处于失重状态 【考点】牛顿运动定律的应用-超重和失重. 【分析】本题由于斜面光滑,两个木块均加速下滑,分别对两个物体受力分析,求出其对斜面体的压力,再对斜面体受力分析,求出斜面体对地面摩擦力. 失重状态:当物体对接触面的压力小于物体的真实重力时,就说物体处于失重状态,此时有向下的加速度,合力也向下; 超重状态:当物体对接触面的压力大于物体的真实重力时,就说物体处于超重状态,此时有向上的加速度,合力也向上. 【解答】解:A、由几何关系,得到:N1=mgcosα 故物体a对斜面体的压力为N1′=mgcosα ① 同理,物体b对斜面体的压力为N2′=mgcosβ ② 对斜面体受力分析,如图,假设摩擦力向左 根据共点力平衡条件,得到 f+N2′cosα﹣N1′cosβ=0 ③ F支﹣Mg﹣N1′sinβ﹣N2′sinβ=0 ④ 根据题意 α+β=90° ⑤ 由①~⑤式解得 f=0,所以楔形木块静止不动,故A错误,B错误 C、对木块a受力分析,如图,受重力和支持力 木块均加速下滑,所以a木块处于失重状态,故C错误; D、同理,对木块b进行受力分析,可知B也处于失重状态,故D正确 故选:D 6.汽车以额定功率在平直公路上匀速行驶,在t1时刻突然使汽车的功率减小一半,并保持该功率继续行驶,到t2时刻汽车又开始做匀速直线运动(设汽车所受阻力不变),则在t1~t2时间内( ) A.汽车的加速度保持不变 B.汽车的加速度逐渐减小 C.汽车的速度先减小后增大 D.汽车的速度先增大后减小 【考点】功率、平均功率和瞬时功率. 【分析】汽车匀速行驶时,牵引力等于阻力,当汽车的功率减小一半,根据P=Fv知,此时牵引力减小为原来的一半,汽车做减速运动,速度减小,则牵引力增大,根据牛顿第二定律,知加速度减小,当牵引力增大到等于阻力时,又做匀速直线运动. 【解答】解:当汽车的功率突然减小一半,由于速度,来不及变化,根据P=Fv知,此时牵引力减小为原来的一半,则F<f.此时a=<0,即加速度a与运动方向相反,汽车开始做减速运动,速度减小.速度减小又导致牵引力增大,根据牛顿第二定律,知加速度减小,当牵引力增大到等于阻力时,加速度减少到0,又做匀速直线运动.由此可知在t1~t2的这段时间内汽车的加速度逐渐减小,速度逐渐减小.故B正确,A、C、D错误. 故选B. 7.如图所示,质量均为m的小球A、B用两根不可伸长的轻绳连接后悬挂于O点,在外力F的作用下,小球A、B处于静止状态.若要使两小球处于静止状态,且悬线OA与竖直方向的夹角θ保持30°不变,则外力F的大小不可能为( ) A.0.5mg B.mg C.2mg D.5mg 【考点】力的合成. 【分析】对AB两球整体受力分析,受重力G,OA绳子的拉力T以及拉力F,其中重力大小和方向都不变,绳子的拉力方向不变大小变,拉力的大小和方向都变,根据共点力平衡条件,利用平行四边形定则作图可以得出拉力的最小值和最大值. 【解答】解:对AB两球整体受力分析,受重力G=2mg,OA绳子的拉力T以及拉力F,三力平衡,将绳子的拉力T和拉力F合成,其合力与重力平衡, 如图: 当拉力F与绳子的拉力T垂直时,拉力F最小,最小值为Fmin=(2m)gsin30°,即mg; 由于拉力F的方向具有不确定性,因而从理论上讲,拉力F最大值可以取到任意值,故A错误,BCD正确. 本题选择错误的,故选:A. 8.如图所示,在M点分别以不同的速度将两小球水平抛出.两小球分别落在水平地面上的P点、Q点.已知O点是M点在地面上的竖直投影,OP:PQ=1:3,且不考虑空气阻力的影响.下列说法中正确的是( ) A.两小球的下落时间之比为1:3 B.两小球的下落时间之比为1:4 C.两小球的初速度大小之比为1:3 D.两小球的初速度大小之比为1:4 【考点】平抛运动. 【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据高度比较运动的时间,结合水平位移和时间求出初速度之比. 【解答】解:A、两球做平抛运动,高度相同,则下落的时间相同,故A、B错误. C、由于两球的水平位移之比为1:4,根据知,两小球的初速度大小之比为1:4,故C错误,D正确. 故选:D. 9.如图,A为置于地球赤道上的物体,B为绕地球做椭圆轨道运行的卫星,C为绕地球做圆周运动的卫星,P为B、C两卫星轨道的交点.已知A、B、C绕地心运动的周期相同.相对于地心,下列说法中正确的是( ) A.卫星C的运行速度小于物体A的速度 B.卫星B在P点的加速度大小与卫星C在该点加速度大小相等 C.卫星B运动轨迹的半长轴与卫星C运动轨迹的半径相等 D.物体A和卫星C具有相同大小的加速度 【考点】人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用. 【分析】根据A、C的周期相等,知角速度相等,通过v=rω比较A、C速度的大小.因为卫星的周期一定,根据万有引力提供向心力确定其轨道半径一定.根据卫星所受的万有引力,通过牛顿第二定律比较加速度的大小. 【解答】解:由题意可知,A、B、C绕地心运动的周期T相同,由ω=可知,A、B、C的角速度相等; A、卫星C做圆周运动的半径大于A的半径,由v=ωr可知,C的线速度大于A的线速度,故A错误; B、由牛顿第二定律得:G=ma,解得,加速度:a=,在B点,G、M、r都相同,卫星B在P点的加速度大小与卫星C在该点加速度大小相等,故B正确; C、由开普勒第三定律可知: =,则卫星B运动轨迹的半长轴与卫星C运动轨迹的半径相等,故C正确; D、由牛顿第二定律得:G=ma,解得,加速度:a=,A、C的半径不同,它们的加速度不同,故D错误; 故选:BC. 10.如图,两个半径不同而内壁光滑的半圆轨道固定于地面,一个小球(可以视为质点)先后从与球心在同一水平高度的A、B两点由静止开始自由下滑,通过轨道最低点时( ) A.小球对轨道的压力相同 B.小球对两轨道的压力不同 C.此时小球的向心加速度不相等 D.此时小球的机械能相等 【考点】机械能守恒定律. 【分析】小球从与球心在同一水平高度的A、B两点由静止开始自由下滑过程中,受到重力和支持力作用,但只有重力做功,机械能守恒,由机械能守恒定律可求出小球到最低点的速度,然后由向心加速度公式求向心加速度,由牛顿第二定律求出支持力,进而来比较向心加速度大小和压力大小. 【解答】解:A、设半圆轨道的半径为r,小球到最低点的速度为v,由机械能守恒定律得:mgr=mv2,小球的向心加速度an=,联立两式解得:an=2g,与半径无关,因此此时小球的向心加速度相等,故A正确,C错误. B、在最低点,由牛顿第二定律得:FN﹣mg=m,联立解得;FN=3mg,即压力为3mg,也与半径无关,所以小球对轨道的压力相同.故B错误; D、因机械能守恒,故两小球在最高点的机械能均等于开始下落时的重力势能,故机械能相同,故D正确. 故选:AD. 11.实验小组为了探究物体在倾角不同的斜面上的运动情况,将足够长的粗糙木板的一端固定在水平地面上,使物体以大小相同的初速度v0由底端冲上斜面,每次物体在斜面上运动过程中斜面倾角θ保持不变.在倾角θ从0°逐渐增大到90°的过程中( ) A.物体的加速度先减小后增大 B.物体的加速度先增大后减小 C.物体在斜面上能达到的最大位移先增大后减小 D.物体在斜面上能达到的最大位移先减小后增大 【考点】牛顿第二定律;匀变速直线运动的位移与时间的关系. 【分析】以物体为研究对象,根据牛顿第二定律列方程求解加速度大小,根据倾角变化求解加速度大小;根据运动学计算公式列方程求解位移大小. 【解答】解:AB、以物体为研究对象,受力分析如图所示, 根据牛顿第二定律可得:mgsinθ+μmgcosθ=ma, 解得:a=gsinθ+μgcosθ=g(), 令sinβ=,则cosβ=,所以得:a=gsin(θ+β),所以随着θ角的增大,加速度先增大再减小,A错误、B正确; CD、根据位移速度关系可得:,可得:x=,加速度先增大再减小,所以位移先减小后增大,C错误、D正确. 故选:BD. 12.2015年人类首次拍摄到冥王星的高清图片,为进一步探索太阳系提供了宝贵的资料,冥王星已被排除在地球等八大行星行列之外,它属于“矮星行”,表面温度很低,上面绝大多数物质只能是固态或液态,已知冥王星的质量远小于地球的质量,绕太阳的公转的半径远大于地球的公转半径.根据以上信息可以确定( ) A.冥王星公转的周期一定大于地球的公转周期 B.冥王星的公转速度一定小于地球的公转速度 C.冥王星表面的重力加速度一定小于地球表面的重力加速度 D.冥王星上的第一宇宙速度一定小于地球上的第一宇宙速度 【考点】万有引力定律及其应用;向心力. 【分析】根据万有引力提供向心力得出线速度、周期的表达式,结合冥王星和地球的轨道半径比较线速度和周期的大小.根据万有引力等于重力得出星球表面重力加速度的表达式,从而分析判断,根据万有引力提供向心力得出星球第一宇宙速度的表达式,从而分析判断. 【解答】解:A、根据知,T=,v=,因为冥王星的轨道半径远大于地球的轨道半径,则冥王星公转周期一定大于地球的公转周期,冥王星的公转速度一定小于地球的公转速度,故A、B正确. C、根据知,g=,星球表面的重力加速度与星球的质量以及星球的半径有关,由于冥王星的质量远小于地球质量,但是两者的半径关系未知,无法比较星球表面的重力加速度,故C错误. D、根据得,v=,星球的第一宇宙速度与星球的质量和半径有关,由于冥王星的质量远小于地球质量,但是两者的半径关系未知,无法比较星球的第一宇宙速度,故D错误. 故选:AB. 二、实验题(共2小题,共14分)本题请将解答填在答题卡相应的位置. 13.如图,气垫导轨上滑块的质量为M,钩码的质量为m,遮光条宽度为d,两光电门间的距离为L,气源开通后滑块在牵引力的作用下先后通过两个光电门的时间为△t1和△t2.当地的重力加速度为g (1)用上述装置测量滑块加速度的表达式为 (用已知量表示); (2)用上述装置探究滑块加速度a与质量M及拉力F的关系,要使绳中拉力近似等于钩码的重力,则m与M之间的关系应满足 M>>m ; (3)用上述装置探究系统在运动中的机械能关系,滑块从光电门1运动到光电门2的过程中满足关系式 时(用已知量表示),系统机械能守恒.若测量过程中发现系统动能增量总是大于钩码重力势能的减少量,可能的原因是 导轨不平,右端高 . 【考点】探究加速度与物体质量、物体受力的关系. 【分析】(1)光电门测量滑块瞬时速度的原理是遮光条通过光电门的速度可以用平均速度代替即v=,再根据运动学公式即可求出物体的加速度a. (2)只有在滑块质量远大于钩码质量时,才可近似认为滑块受到的拉力等于钩码的重力. (3)实验原理是:求出通过光电门1时的速度v1,通过光电门1时的速度v2,测出两光电门间的距离A,在这个过程中,减少的重力势能能:△Ep=mgL,增加的动能为:△Ek=(M+m)v22﹣(M+m)v12;再比较减少的重力势能与增加的动能之间的关系. 将气垫导轨倾斜后,由于滑块的重力势能的增加或减少没有记入,故增加的动能和减少的重力势能不相等,两种情况分别讨论. 【解答】解:(1)根据遮光板通过光电门的速度可以用平均速度代替得: 滑块通过第一个光电门时的速度: 滑块通过第二个光电门时的速度: 滑块的加速度: (2)当滑块质量M远大于钩码质量m 时,细线中拉力近似等于钩码重力. (3)实验原理是:求出通过光电门1时的速度v1,通过光电门1时的速度v2,测出两光电门间的距离A,在这个过程中,减少的重力势能能:△Ep=mgL,增加的动能为: (M+m)v22﹣(M+m)v12 我们验证的是:△Ep与△Ek的关系,即验证:△Ep=△Ek代入得: mgL=(M+m)v22﹣(M+m)v12 即 将气垫导轨倾斜后,由于滑块的重力势能的增加或减少没有记入,故增加的动能和减少的重力势能不相等:若左侧高,系统动能增加量大于重力势能减少量;若右侧高,系统动能增加量小于重力势能减少量;故气垫导轨的左侧偏高. 故答案为: (1) (2)M>>m (3) 导轨不平,右端高 14.某实验小组利用图1所示的装置探究加速度与力、质量的关系. ①下列做法正确的是 AD (填字母代号) A.调节滑轮的高度,使牵引木块的细绳与长木板保持平行 B.在调节木板倾斜度平衡木块受到的滑动摩擦力时,将装有砝码的砝码桶通过定滑轮拴在木块上 C.实验时,先放开木块再接通打点计时器的电源 D.通过增减木块上的砝码改变质量时,不需要重新调节木板倾斜度 ②甲、乙两同学在同一实验室,各取一套图2所示的装置放在水平桌面上,木块上均不放砝码,在没有平衡摩擦力的情况下,研究加速度a与拉力F的关系,分别得到图2中甲、乙两条直线.设甲、乙用的木块质量分别为m甲、m乙,甲、乙用的木块与木板间的动摩擦因数分别为μ甲、μ乙,由图可知,m甲 小于 m乙,μ甲 大于 μ乙.(选填“大于”、“小于”或“等于”) 【考点】探究加速度与物体质量、物体受力的关系. 【分析】①实验要保证拉力等于小车受力的合力,要平衡摩擦力,细线与长木板平行; ②a﹣F图象的斜率表示加速度的倒数;求解出加速度与拉力F的表达式后结合图象分析得到动摩擦因素情况. 【解答】解:①A、调节滑轮的高度,使牵引木块的细绳与长木板保持平行,否则拉力不会等于合力,故A正确; B、在调节木板倾斜度平衡木块受到的滑动摩擦力时,不能将装有砝码的砝码桶通过定滑轮拴木块上,故B错误; C、实验时,先接通打点计时器的电源再放开木块,故C错误; D、根据平衡条件可知,与质量大小无关,当通过增减木块上的砝码改变质量时,不需要重新调节木板倾斜度,故D正确; 选择:AD; ②当没有平衡摩擦力时有:T﹣f=ma,故a=T﹣μg,即图线斜率为,纵轴截距的大小为μg.观察图线可知m1小于m2,μ甲大于μ乙; 故答案为:①AD; ②小于,大于. 三、计算题:共3小题,共32分.应写出必要的文字说明、方程式和重要演算步骤, 15.如图所示,静止放在水平光滑的桌面上的纸带,其上有一质量为m=0.5kg的铁块,它与纸带右端的距离为L=0.5m,铁块与纸带间的动摩擦因数为μ=0.2.现用力F水平向左将纸带从铁块下抽出,当纸带全部抽出时铁块恰好到达桌面边缘,铁块抛出后落地点离抛出点的水平距离为x=0.8m.已知g=10m/s2,桌面高度为H=0.8m,不计纸带质量,不计铁块大小,铁块不翻滚.求: (1)铁块抛出时速度大小v; (2)纸带从铁块下抽出所用时间t. 【考点】平抛运动;牛顿第二定律. 【分析】(1)根据高度求出铁块平抛运动的时间,结合水平位移和时间求出铁块抛出时的速度大小. (2)根据牛顿第二定律求出铁块运动的加速度,结合速度时间公式求出纸带从铁块下抽出所用的时间. 【解答】解:(1)铁块做平抛运动, 水平方向:x=vt…① 竖直方向:H=…② 代入数据联立①②两式解得:v=2m/s. (2)设铁块的加速度为a, 由牛顿第二定律得:μmg=ma…③ 纸带抽出时,铁块的速度v=at…④ 代入数据,联立③④两式解得:t=1 s. 答:(1)铁块抛出时速度大小v为2m/s; (2)纸带从铁块下抽出所用时间t为1s. 16.在操场400m标准跑道上有相距l=21m的甲、乙两名同学,如图所示.甲同学以4m/s的速率绕操场逆时针慢跑.乙同学开始处于静止状态,他加速的最大加速度为1m/s2,最大速度为5m/s.乙同学想在最短时间内与甲同学相遇,试通过计算判断乙同学应该顺时针运动还是逆时针运动.(假设乙同学在直道部分加速) 【考点】匀变速直线运动的位移与时间的关系;匀变速直线运动的速度与时间的关系. 【分析】根据速度时间公式求出乙同学加速到最大速度所需的时间,求出此时甲、乙的位移,然后分别讨论乙同学顺时针和逆时针运动,求出相遇的时间,通过比较确定哪种情况时间最短. 【解答】解:若乙同学逆时针运动,乙同学加速到最大速度所需的时间为:t1= 这段时间内乙运动了:s乙=a==12.5 m, 甲同学运动了:s甲=v甲t1=4×5m=20 m 乙同学追上甲同学还需要时间为: t2==28.5 s 所需的总时间为:t总=t1+t1=33.5 s 如果乙同学顺时针运动,乙同学加速到最大速度所需的时间为:t1′= 这段时间内乙运动了: =12.5 m 甲同学运动了:s′甲=v甲t′1=4×5m=20 m 乙同学追上甲同学还需要 t′2==s=38.5 s 故t′总=t′1+t′2=43.5 s, 由此可见t总<t′总,乙同学逆时针运动相遇时间比较短. 答:乙同学应该逆时针运动. 17.某电视台闯关竞技节目的第一关是雪滑梯,其结构可以简化为下图模型,雪滑梯顶点距地面高h=15m,滑梯斜面部分长l=25m,在水平部分距离斜道底端为x0=20m处有一海绵坑.比赛时参赛运动员乘坐一质量为M的雪轮胎从赛道顶端滑下,在水平雪道上某处翻离雪轮胎滑向海棉坑,运动员停在距离海绵坑1m范围内算过关.已知雪轮胎与雪道间的动摩擦因数μ1=0.3,运动员与雪道间动摩擦因数为μ2=0.8,假没运动员离开雪轮胎的时间不计,运动员落到雪道上时的水平速度不变,求质量为m的运动员(可视为质点)在水平雪道上的什么区域离开雪轮胎才能闻关成功. 【考点】牛顿第二定律;匀变速直线运动规律的综合运用. 【分析】设运动员乘坐雪轮胎沿斜槽滑动过程是匀加速直线运动,根据牛顿第二定律列式求解加速度,根据速度位移公式列式求解末速度;在水平面上是匀减速直线运动,根据牛顿第二定律列式求解加速度,根据运动学公式列式求解. 【解答】解:设运动员乘坐雪轮胎沿斜槽滑动时的加速度为a0,滑道底端时的速度大小为v,有: (m+M)gsinθ﹣μ1(M+m)gcosθ=(m+M)a0 根据速度位移公式,有: v2=2a0l 代入数据解得: m/s 在水平轨道上运动时,运动员乘坐雪轮胎时加速度大小为a1,翻下后加速度大小为a2,由牛顿运动定律得: μ1(m+M)g=(m+M)a1 μ2mg=ma2 设在距离海绵坑x1处翻下时刚好滑道海绵坑边停下,翻下时速度为v1,则有: v2﹣=2a1(x0﹣x1) 联立并代入数据解得:x1=6m 设在距离海绵坑x2处翻下刚好滑到距离海绵坑边1m处停下,翻下时速度为v2,则有: 联立并代入数据解得:x2=7.6m 答:选手应该在距离海绵坑7.6m至6m之间的区域离开雪轮胎,才能闯关成功. 2017年1月4日 【来.源:全,品…中&高*考*网】查看更多