- 2021-05-26 发布 |
- 37.5 KB |
- 16页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【物理】2019届一复习人教版带电粒子在电场中的运动学案(江苏专用)
第3节带电粒子在电场中的运动 (1)电容器所带的电荷量是指每个极板所带电荷量的代数和。(×) (2)电容器的电容与电容器所带电荷量成反比。(×) (3)放电后的电容器电荷量为零,电容也为零。(×) (4)带电粒子在匀强电场中只能做类平抛运动。(×) (5)带电粒子在电场中,只受电场力时,也可以做匀速圆周运动。(√) (6)示波管屏幕上的亮线是由于电子束高速撞击荧光屏而产生的。(√) (7)带电粒子在电场中运动时重力一定可以忽略不计。(×) 突破点(一) 平行板电容器的动态分析 1.平行板电容器动态变化的两种情况 (1)电容器始终与电源相连时,两极板间的电势差U保持不变。 (2)充电后与电源断开时,电容器所带的电荷量Q保持不变。 2.平行板电容器动态问题的分析思路 3.平行板电容器问题的一个常用结论 电容器充电后断开电源,在电容器所带电荷量保持不变的情况下,电场强度与极板间的距离无关。 [题点全练] 1.(2017·海南高考)如图,平行板电容器的两极板竖直放置并分别与电源的正负极相连,一带电小球经绝缘轻绳悬挂于两极板之间,处于静止状态。现保持右极板不动,将左极板向左缓慢移动。关于小球所受的电场力大小F和绳子的拉力大小T,下列判断正确的是( ) A.F逐渐减小,T逐渐减小 B.F逐渐增大,T逐渐减小 C.F逐渐减小,T逐渐增大 D.F逐渐增大,T逐渐增大 解析:选A 电容器与电源相连,所以两端间电势差不变,将左极板向左缓慢移动过程中,两板间距离增大,则由U=Ed可知,电场强度E减小,电场力F=Eq减小;小球处于平衡状态,受重力、拉力与电场力的作用而处于平衡,故拉力与电场力和重力的合力大小相等,方向相反;根据平行四边形定则可知,T=;由于重力不变,电场力变小,故拉力变小。故A正确,B、C、D错误。 2.(2016·天津高考)如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地。在两极板间有一固定在P点的点电荷,以E表示两板间的电场强度,Ep表示点电荷在P点的电势能,θ表示静电计指针的偏角。若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则( ) A.θ增大,E增大 B.θ增大,Ep不变 C.θ减小,Ep增大 D.θ减小,E不变 解析:选D 由题意可知平行板电容器的带电荷量Q不变,当下极板不动,上极板向下移动一段距离时,两极板间距d减小,则电容C变大,由U=可知U变小,则静电计指针的偏角θ减小。又因为两板间电场强度E===,Q、S不变,则E不变。因为E不变,则点电荷从P 点移动到下极板(电势为零)电场力做功不变,电势能的变化相同,则点电荷在P点的电势能Ep不变,故只有选项D正确。 3.[多选]如图所示的电路中,理想二极管和水平放置的平行板电容器串联接在电路中,闭合开关S,平行板间有一质量为m,电荷量为q的带电液滴恰好能处于静止状态,则下列说法正确的是( ) A.将A板向上平移一些,液滴将向下运动 B.将A板向左平移一些,液滴将向上运动 C.断开开关S,将A板向下平移一些,液滴将保持静止不动 D.断开开关S,将A板向右平移一些,液滴将向上运动 解析:选BCD 二极管具有单向导电性,闭合开关后电容器充电,电容器的电容:C=,C=,极板间的电场强度:E=,整理得:E=;液滴静止,液滴所受合力为零,向上的电场力与向下的重力相等,qE=mg;A极板上移时,d变大,由C=可知,C变小,由于二极管具有单向导电性,电容器不能放电,由E=可知电容器两极板间的电场强度不变,液滴所受电场力不变,液滴静止不动,故A错误;A极板左移时,S变小,由C=可知,C变小,而两极板间的电压U等于电源电动势不变,由于二极管具有单向导电性,电容器不能放电,由E=可知电容器两极板间的电场强度增大,液滴所受电场力增大,液滴将向上运动,故B正确;当断开开关S,将A板向下平移一些时,d变小,由C=可知,C变大,因电容器带电量不变,由E=可得,电场强度不变,那么液滴将保持静止不动,故C正确;同理,断开开关S,将A板向右平移一些时,S变小,由C=可知,C变小,因电容器带电量不变,由E=可得,电场强度变大,那么液滴将向上运动,故D正确。 突破点(二) 带电粒子在电场中的直线运动 1.带电粒子在电场中运动时重力的处理 基本粒子 如电子、质子、α粒子、离子等,除有说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量)。 带电颗粒 如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力。 2.解决带电粒子在电场中的直线运动问题的两种思路 (1)根据带电粒子受到的电场力,用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的运动情况。此方法只适用于匀强电场。 (2)根据电场力对带电粒子所做的功等于带电粒子动能的变化求解。此方法既适用于匀强电场,也适用于非匀强电场。 [典例] (2017·江苏高考)如图所示,三块平行放置的带电金属薄板A、B、C中央各有一小孔,小孔分别位于O、M、P点。由O点静止释放的电子恰好能运动到P点。现将C板向右平移到P′点,则由O点静止释放的电子( ) A.运动到P点返回 B.运动到P和P′点之间返回 C.运动到P′点返回 D.穿过P′点 [解析] 电子在A、B板间的电场中加速运动,在B、C板间的电场中减速运动,设A、B板间的电压为U,B、C板间的电场强度为E,M、P两点间的距离为d,则有eU-eEd=0,若将C板向右平移到P′点,B、C两板所带电荷量不变,由E===可知,C板向右平移到P′时,B、C两板间的电场强度不变,由此可以判断,电子在A、B板间加速运动后,在B、C板间减速运动,到达P点时速度为零,然后返回,A项正确,B、C、D项错误。 [答案] A [集训冲关] 1.(2015·海南高考)如图,一充电后的平行板电容器的两极板相距l。在正极板附近有一质量为M、电荷量为q(q>0)的粒子;在负极板附近有另一质量为m、电荷量为-q的粒子。在电场力的作用下,两粒子同时从静止开始运动。已知两粒子同时经过一平行于正极板且与其相距l的平面。若两粒子间相互作用力可忽略,不计重力,则M∶m为( ) A.3∶2 B.2∶1 C.5∶2 D.3∶1 解析:选A 设极板间电场强度为E,两粒子的运动时间相同,对M,由牛顿第二定律有:qE=MaM,由运动学公式得: l=aMt2;对m,由牛顿第二定律有qE=mam 根据运动学公式得:l=amt2 由以上几式解之得:=,故A正确。 2.如图所示,充电后的平行板电容器水平放置,电容为C,极板间距离为d,上极板正中有一小孔。质量为m、电荷量为+q的小球从小孔正上方高h处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g)。求: (1)小球到达小孔处的速度; (2)极板间电场强度大小和电容器所带电荷量; (3)小球从开始下落运动到下极板处的时间。 解析:(1)由v2=2gh,得v=。 (2)在极板间带电小球受重力和电场力, 有mg-qE=ma,0-v2=2ad 得E=,U=Ed,Q=CU 得Q=C。 (3)由h=gt12,0=v+at2,t=t1+t2 综合可得t= 。 答案:见解析 突破点(三) 带电粒子在匀强电场中的偏转 1.基本规律 设粒子带电荷量为q,质量为m,两平行金属板间的电压为U,板长为l,板间距离为d(忽略重力影响), 则有 (1)加速度:a===。 (2)在电场中的运动时间:t=。 (3)速度 v=,tan θ==。 (4)位移 2.两个结论 (1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的。 证明:由qU0=mv02及tan φ=得tan φ=。 (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O为粒子水平位移的中点,即O到电场边缘的距离为。 3.带电粒子在匀强电场中偏转的功能关系 当讨论带电粒子的末速度v时也可以从能量的角度进行求解:qUy=mv2-mv02,其中Uy=y,指初、末位置间的电势差。 [典例] (2016·北京高考)如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出。已知电子质量为m,电荷量为e,加速电场电压为U0。偏转电场可看做匀强电场,极板间电压为U,极板长度为L,板间距为d。 (1)忽略电子所受重力,求电子射入偏转电场时初速度v0和从电场射出时沿垂直板面方向的偏转距离Δy; (2)分析物理量的数量级,是解决物理问题的常用方法。在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因。已知U=2.0×102 V,d=4.0×10-2 m,m=9.1×10-31 kg,e=1.6×10-19 C,g=10 m/s2。 (3)极板间既有静电场也有重力场。电势反映了静电场各点的能的性质,请写出电势φ的定义式。类比电势的定义方法,在重力场中建立“重力势”φG的概念,并简要说明电势和“重力势”的共同特点。 [思路点拨] 解答本题应把握以下三点: (1)熟练掌握带电粒子在加速电场和偏转电场中运动规律。 (2)通过计算重力的大小,根据数量级,分析忽略重力的原因。 (3)利用类比法准确定义“重力势”,并说明共同特点。 [解析] (1)根据功和能的关系,有eU0=mv02 电子射入偏转电场的初速度v0= 在偏转电场中,电子的运动时间Δt==L 偏转距离Δy=a(Δt)2=。 (2)考虑电子所受重力和电场力的数量级,有 重力G=mg~10-29 N 电场力F=~10-15 N 由于F≫G,因此不需要考虑电子所受重力。 (3)电场中某点电势φ定义为电荷在该点的电势能Ep与其电荷量q的比值,即φ= 由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能EG与其质量m的比值,叫做“重力势”,即φG=。 电势φ和重力势φG都是反映场的能的性质的物理量,仅由场自身的因素决定。 [答案] (1)v0= Δy= (2)(3)见解析 [方法规律] 分析匀强电场中的偏转问题的关键 (1)条件分析:不计重力,且带电粒子的初速度v0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动。 (2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动。 [集训冲关] 1.(2018·徐州五校联考)a、b、c三个α粒子(重力不计)由同一点M同时垂直场强方向进入带有等量异种电荷的两平行金属板的电场间,其轨迹如图所示,其中b恰好沿板的边缘飞出电场,由此可知( ) A.进入电场时a的速度最大,c的速度最小 B.a、b、c在电场中运动经历的时间相等 C.若把上极板向上移动,则a在电场中运动经历的时间增长 D.若把下极板向下移动,则a在电场中运动经历的时间增长 解析:选D 三个α粒子进入电场后加速度相同,由题图看出,竖直方向a、b偏转距离相等,大于c的偏转距离,由y=at2知,a、b运动时间相等,大于c的运动时间,即ta=tb>tc。又水平位移的关系为 xa<xb=xc,因为粒子水平方向都做匀速直线运动,所以vc>vb>va,即a的速度最小,c的速度最大。故A、B错误。若把上极板向上移动,根据推论E=知,板间场强不变,粒子的加速度不变,可知a的运动情况不变,运动时间不变,故C错误。若把下极板向下移动,根据推论E=知,板间场强不变,粒子的加速度不变,a的竖直分位移增大,由位移公式知,a在电场中运动经历的时间增长,故D正确。 2. 示波器的示意图如图,金属丝发射出来的电子(初速度为零,不计重力)被加速后从金属板的小孔穿出,进入偏转电场。电子在穿出偏转电场后沿直线前进,最后打在荧光屏上。设加速电压U1=1 640 V,偏转极板长L=4 cm,偏转板间距d=1 cm,当电子加速后从两偏转板的中央沿板平行方向进入偏转电场。 (1)偏转电压U2为多大时,电子束打在荧光屏上偏转距离最大? (2)如果偏转极板右端到荧光屏的距离s=20 cm,则电子束最大偏转距离为多少? 解析:(1)设电子电量大小为e,质量为m,进入偏转电场初速度为v0,根据动能定理,有eU1=mv02 电子在偏转电场中的飞行时间t1= 电子在偏转电场的加速度a== 要使电子束打在荧光屏上偏转距离最大,电子经偏转电场后必须沿下板边缘射出。 电子在偏转电场中的侧移距离为,则有:=at12 联立以上各式,得偏转电压U2= 代入数据解得:U2=205 V。 (2)设电子离开电场后侧移距离为y1,则电子束打在荧光屏上最大偏转距离y=+y1 由于电子离开偏转电场的侧向速度vy=at1= 电子离开偏转电场后的侧向位移y1= 得电子最大偏转距离y=+ 代入数据解得:y=0.055 m。 答案:(1)205 V (2)0.055 m 电容器在现代科技生活中的应用 电容器在现代生活中应用十分广泛,其中作为传感器使用的有智能手机上的电容触摸屏、电容式传声器、电容式加速度计等。 (一)智能手机上的电容触摸屏 1.[多选] 目前智能手机普遍采用了电容触摸屏,电容触摸屏是利用人体的电流感应进行工作的,它是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),夹层ITO涂层作为工作面,四个角引出四个电极,当用户手指触摸电容触摸屏时,手指和工作面形成一个电容器,因为工作面上接有高频信号,电流通过这个电容器分别从屏的四个角上的电极中流出,且理论上流经四个电极的电流与手指到四个角的距离成比例,控制器通过对四个电流比例的精密计算来确定手指位置。对于电容触摸屏,下列说法正确的是( ) A.电容触摸屏只需要触摸,不需要压力即能产生位置信号 B.使用绝缘笔,在电容触摸屏上也能进行触控操作 C.手指压力变大时,由于手指与屏的夹层工作面距离变小,电容变小 D.手指与屏的接触面积变大时,电容变大 解析:选AD 据题意知,电容触摸屏只需要触摸,由于流经四个电极的电流与手指到四个角的距离成比例,控制器就能确定手指的位置,因此不需要手指有压力,故A正确;绝缘笔与工作面不能形成一个电容器,所以不能在电容屏上进行触控操作,故B错误;手指压力变大时,由于手指与屏的夹层工作面距离变小,电容将变大,故C错误;手指与屏的接触面积变大时,电容变大,故D正确。 (二)电容式传声器 2.(2018·汕头模拟)图示为某电容传声器结构示意图,当人对着传声器讲话,膜片会振动。若某次膜片振动时,膜片与极板距离增大,则在此过程中( ) A.膜片与极板间的电容增大 B.极板所带电荷量增大 C.膜片与极板间的电场强度增大 D.电阻R中有电流通过 解析:选D 根据C=可知,膜片与极板距离增大,膜片与极板间的电容减小,选项A错误;根据Q=CU可知极板所带电荷量减小,因此电容器要通过电阻R放电,所以选项D正确,B错误;根据E=可知,膜片与极板间的电场强度减小,选项C错误。 (三)电容式加速度计 3.[多选]电容式加速度传感器的原理如图所示,质量块左、右侧连接电介质、轻质弹簧,弹簧与电容器固定在外框上,质量块可带动电介质移动,改变电容。则( ) A.电介质插入极板间越深,电容器电容越小 B.当传感器以恒定加速度运动时,电路中有恒定电流 C.若传感器原来向右匀速运动,突然减速时弹簧会压缩 D.当传感器由静止突然向右加速时,电路中有顺时针方向的电流 解析:选CD 由C=知,电介质插入越深,εr越大,即C越大,A错;当传感器以恒定加速度运动时,电介质相对电容器静止,电容不变,电路中没有电流,B错;传感器向右匀速运动,突然减速时,质量块由于惯性相对传感器向右运动,弹簧压缩变短,C对;传感器由静止突然向右加速时,电介质相对电容器向左运动,εr增大,C增大,电源电动势不变,由C=知,Q增大,上极板电荷量增大,即电路中有顺时针方向的电流,D对。 本类电容式传感器的工作原理是通过εr、S、d的变化利用公式C=和C=来判断C的变化,进一步分析Q的变化。 对点训练:平行板电容器的动态分析 1.(2018·宁波二模)如图所示,a、b为平行金属板,静电计的外壳接地,合上开关S后,静电计的指针张开一个较小的角度,能使角度增大的办法是( ) A.使a、b板的距离增大一些 B.使a、b板的正对面积减小一些 C.断开S,使a、b板的距离增大一些 D.断开S,使a、b板的正对面积增大一些 解析:选C 开关S闭合,电容器两端的电势差不变,则静电计指针的张角不变,故A、B错误;断开S,电容器所带的电量不变,a、b板的距离增大,则电容减小,根据U=知,电势差增大,则指针张角增大,故C正确;断开S,电容器所带的电量不变,a、b板的正对面积增大,电容增大,根据U=知,电势差减小,则指针张角减小,故D错误。 2.(2018·徐州调研)一平行板电容器充电后与电源断开,负极板接地,两板间有一个正检验电荷固定在P点,如图所示,以C表示电容器的电容、E表示两板间的场强、φ表示P点的电势,W表示正电荷在P点的电势能,若正极板保持不动,将负极板缓慢向右平移一小段距离l0,则下列关于各物理量与负极板移动距离x的关系图像中正确的是( ) 解析:选C 由C=知,C与两极板间距离d成反比,C与x不是线性关系,A错;电容器充电后与电源断开,电荷量不变,由C=、Q=CU、U=Ed得E=是定值,B错;因负极板接地,电势为零,所以P点电势为φ=E(L-x),L为P点到负极板的初始距离,E不变,φ随x增大而线性减小,C对;由W=qφ知W与电势φ变化情况一样,D错。 3.2016年8月23日,第七届中国国际超级电容器产业展览会在上海举行,作为中国最大超级电容器展,众多行业龙头踊跃参与,如图所示,平行板电容器与电动势为E的直流电源(内阻不计)连接,一带电油滴位于电容器中的P点且恰好处于平衡状态,在其他条件不变的情况下,现将平行板电容器的两极板非常缓慢地错开一些,那么在错开的过程中( ) A.电容器的电容C增大 B.电容器所带的电荷量Q减小 C.油滴将向下加速运动,电流计中的电流从N流向M D.油滴静止不动,电流计中的电流从M流向N 解析:选B 将两极板缓慢地错开一些,两极板正对面积减小,根据电容的决定式C=得知,电容减小,故A错误;根据Q=CU,由于电容器电容减小,因两极板间电压U 不变,那么极板带的电量会减小,故B正确;将平行板电容器的两极板非常缓慢地水平错开一些,由于电容器两板间电压不变,根据E=,得知板间场强不变,油滴所受的电场力不变,则油滴将静止不动;再由C=知,电容器带电量减小,电容器处于放电状态,电路中产生顺时针方向的电流,则电流计中有N→M的电流,故C、D错误。 对点训练:带电粒子在电场中的直线运动 4.[多选]如图所示 ,M、N是在真空中竖直放置的两块平行金属板,板间有匀强电场,质量为m、电荷量为-q的带电粒子,以初速度v0由小孔进入电场,当M、N间电压为U时,粒子刚好能到达N板,如果要使这个带电粒子能到达M、N两板间距的处返回,则下述措施能满足要求的是( ) A.使初速度减为原来的 B.使M、N间电压提高到原来的2倍 C.使M、N间电压提高到原来的4倍 D.使初速度和M、N间电压都减为原来的 解析:选BD 在粒子刚好到达N板的过程中,由动能定理得-qEd=0-mv02,所以d=,令带电粒子离开M板的最远距离为x,则使初速度减为原来的,x=;使M、N间电压提高到原来的2倍,电场强度变为原来的2倍,x=,使M、N间电压提高到原来的4倍,电场强度变为原来的4倍,x=;使初速度和M、N间电压都减为原来的,电场强度变为原来的一半,x=。 5.真空中某竖直平面内存在一水平向右的匀强电场,一质量为m的带电微粒恰好能沿图示虚线(与水平方向成θ角)由A向B做直线运动,已知重力加速度为g,微粒的初速度为v0,则( ) A.微粒一定带正电 B.微粒一定做匀速直线运动 C.可求出匀强电场的电场强度 D.可求出微粒运动的加速度 解析:选D 因微粒在重力和电场力作用下做直线运动,而重力竖直向下,由微粒做直线运动条件知电场力必水平向左,微粒带负电,A错;其合外力必与速度反向,大小为F=,即微粒一定做匀减速直线运动,加速度为a=,B错,D对;电场力qE=mgcot θ ,但不知微粒的电荷量,所以无法求出其电场强度,C错。 对点训练:带电粒子在匀强电场中的偏转 6.如图所示,让大量的一价氢离子、一价氦离子和二价氦离子从同一位置经过同一加速电场A由静止开始加速,然后在同一偏转电场B中偏转。忽略离子的重力及离子间的相互作用力。下列说法正确的是( ) A.它们始终为一股离子束 B.它们会分离为二股离子束 C.它们会分离为三股离子束 D.它们会分离为无数股离子束 解析:选A 离子在电场中加速,根据动能定理U1q=mv02;在偏转电场中做类平抛运动,水平方向:L=v0t;竖直方向:y=·t2;联立可得:y=,故可知离子射出偏转电场的偏转距离与粒子的电量和质量无关,所以三种离子始终为一股离子束,选项A正确。 7.[多选](2018·淮安期中)如图所示,虚线框的真空区域内存在着沿纸面方向的匀强电场(具体方向未画出),一质子从bc边上的M点以速度v0垂直于bc边射入电场,从cd边上的Q点飞出电场,不计质子重力。下列说法正确的有( ) A.质子到Q点时的速度可能大于v0 B.质子到Q点时的速度可能等于v0 C.质子到Q点时的速度方向可能与cd边平行 D.质子到Q点时的速度方向可能与cd边垂直 解析:选ABD 若电场强度水平向右,则质子从M点到Q点电场力做正功,动能变大,此时质子到Q点时的速度大于v0,选项A正确;若电场强度方向垂直于MQ连线向下,则质子从M点到Q点电场力不做功,动能不变,此时质子到Q点时的速度等于v0,选项B正确;质子能到达Q点说明电场力有向右的分量,则到达Q点后一定有水平向右的分速度,即质子到Q点时的速度方向不可能与cd边平行,选项C错误;若电场方向斜向右下方,则质子有水平向右的加速度和竖直向下的加速度,当运动到Q点时,竖直方向速度可能减小为零,而只具有水平向右的速度,此时质子到Q点时的速度方向与cd边垂直,选项D正确。 8.[多选](2018·汕头模拟) 一平行板电容器中存在匀强电场,电场沿垂直极板方向。两个比荷(即粒子的电荷量与质量之比)不同的带电粒子a和b,从电容器边缘同一竖直线上的不同位置(如图)沿相同的水平方向同时射入两平行板之间,经过相同时间两粒子落在电容器下极板同一点P上。若不计重力和粒子间的相互作用力,则下列说法正确的是( ) A.粒子a的比荷大于粒子b的比荷 B.粒子a射入时的初速度大于粒子b的初速度 C.若只减小两极板间的电压,则两粒子可能同时落在电容器下极板边缘上 D.若只增大粒子b射入时的初速度,则两粒子可能在两极板之间的某一位置相遇 解析:选AC 粒子在电场中只受电场力作用,电场力与初速度方向垂直,所以,粒子做类平抛运动;在竖直方向,两粒子运动时间相同,a的位移大于b的位移,所以,a的加速度大于b的加速度,又有加速度a=,所以,a的比荷大于b的比荷,故A正确;在水平方向,两粒子运动时间相同,运动位移相同,所以,两粒子射入时的初速度相等,故B错误;若只减小两极板间的电压,则两粒子的加速度同比减小,那么在竖直方向上,位移和加速度的比值仍旧相等,即a、b从原来高度落下需要的时间仍旧相同,所以两粒子可能同时落在电容器下极板边缘上,故C正确;若只增大粒子b射入时的初速度,则在水平方向上b的位移恒大于a的位移,那么两粒子不可能在两板之间的某一位置相遇,故D错误。 考点综合训练 9.(2018·苏州八校联考)如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L=0.1 m,两板间距离d=0.4 cm,有一束相同微粒组成的带正电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下极板上,微粒所带电荷立即转移到下极板且均匀分布在下极板上。设前一微粒落到下极板上时后一微粒才能开始射入两极板间。已知微粒质量为m=2×10-6 kg,电量q=1×10-8 C,电容器电容为C=10-6 F。求:(g=10 m/s2) (1)为使第一个粒子能落在下板中点,则微粒入射速度v0应为多少? (2)以上述速度入射的带电粒子,最多能有多少落到下极板上? 解析:(1)第一个粒子只受重力:=gt2 t=0.02 s,v0==2.5 m/s。 (2)以v0速度入射的带电粒子,恰打到下极板右边缘时,有t1==0.04 s,=at12,a= 由mg-qE=ma E== n==600个。 答案:(1)2.5 m/s (2)600个 10.(2018·扬州模拟)静电喷漆技术具有效率高,浪费少,质量好,有利于工人健康等优点,其装置如图所示。A、B为两块平行金属板,间距d=0.40 m,两板间有方向由B指向A,大小为E=1.0×103 N/C的匀强电场。在A板的中央放置一个安全接地的静电油漆喷枪P,油漆喷枪的半圆形喷嘴可向各个方向均匀地喷出带电油漆微粒,油漆微粒的初速度大小均为v0=2.0 m/s,质量m=5.0×10-15 kg、带电量为q=-2.0×10-16 C。微粒的重力和所受空气阻力均不计,油漆微粒最后都落在金属板B上。试求: (1)微粒打在B板上的动能; (2)微粒到达B板所需的最短时间; (3)微粒最后落在B板上所形成的图形及面积的大小。 解析:(1)电场力对每个微粒所做的功为: W=qEd=2.0×10-16×1.0×103×0.40 J=8.0×10-14 J 微粒从A板到B板过程,根据动能定理得 W=Ekt-Ek0 则得:Ekt=W+Ek0=W+mv02=8.0×10-14+×5.0×10-15×2.02J=9.0×10-14 J。 (2)微粒初速度方向垂直于极板时,到达B板时间最短。 由Ekt=mvt2得: vt= = m/s=6.0 m/s 根据运动学公式得:= 所以微粒到达B板所需的最短时间为: t== s=0.1 s。 (3)根据对称性可知,微粒最后落在B板上所形成的图形是圆形。 由牛顿第二定律得: a== m/s2=40 m/s2 由类平抛运动规律得:R=v0t1 d=at12 则圆形面积为:S=πR2=π(v0t1)2=πv02=3.14×2.02× m2≈0.25 m2。 答案:(1)9.0×10-14 J (2)0.1 s (3)形成的图形是圆形 0.25 m2 11.(2018·邯郸质检)如图,等量异种点电荷固定在水平线上的M、N两点上,有一质量为m、电荷量为+q(可视为点电荷)的小球,固定在长为L的绝缘轻质细杆的一端,细杆另一端可绕过O点且与MN垂直的水平轴无摩擦地转动,O点位于MN的垂直平分线上距MN为L处。现在把杆拉起到水平位置,由静止释放,小球经过最低点B时速度为v,取O点电势为零,忽略q对等量异种电荷形成电场的影响。求: (1)小球经过B点时对杆的拉力大小; (2)在+Q、-Q形成的电场中,A点的电势φA; (3)小球继续向左摆动,经过与A等高度的C点时的速度大小。 解析:(1)小球经B点时,在竖直方向有F-mg=m F=mg+m 由牛顿第三定律知,小球对细杆的拉力大小 F′=mg+m。 (2)由于取O点电势为零,而O在MN的垂直平分线上,所以φB=0 小球从A到B过程中,由动能定理得 mgL+q(φA-φB)=mv2 φA=。 (3)由电场对称性可知,φC=-φA 即UAC=2φA 小球从A到C过程,根据动能定理qUAC=mvC2 vC=。 答案:(1)mg+m (2) (3)查看更多