- 2021-05-26 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020版高考物理一轮复习(教师备用题库)第5讲+共点力的平衡及其应用
第5讲 共点力的平衡及其应用 教师备用题库 1.如图所示,一物块受一恒力F作用,现要使该物块沿直线AB运动,应该再加上另一个力的作用,则加上去的这个力的最小值为( ) A.F cos θ B.F sin θ C.F tan θ D.Ftanθ 答案 B 要使物块沿AB方向运动,恒力F与另一个力的合力必沿AB方向,当另一个力与AB方向垂直时为最小,故F'=F sin θ,故ACD错误,B正确。 2.如图所示,某健身爱好者手拉着轻绳,在粗糙的水平地面上缓慢地移动,保持绳索始终平行于地面。为了锻炼自己的臂力和腿部力量,可以在O点悬挂不同的重物G,则( ) A.若健身者缓慢向右移动,绳OA拉力变小 B.若健身者缓慢向左移动,绳OB拉力变小 C.若健身者缓慢向右移动,绳OA、OB拉力的合力变大 D.若健身者缓慢向左移动,健身者与地面间的摩擦力变小 答案 D 设绳OA的拉力为FA,绳OB的拉力为FB,重物C的质量为m,因O点始终处于平衡状态,根据平衡条件有:FA cos θ-mg=0,FA sin θ-FB=0,解得FA=mgcosθ,FB=mg tan θ,当健身者缓慢向右移动时,θ角变大,则FA、FB均变大,故选项A正确;当健身者缓慢向左移动时,θ角变小,则FA、FB均变小,因为健身者所受的摩擦力与OB绳拉力FB相等,故健身者与地面间的摩擦力变小,故选项B错误,D正确;不论健身者朝哪里移动,绳OA、OB拉力的合力保持不变,大小等于重物G的重力mg,故选项C错误。 3.如图所示,一根不可伸长的轻绳两端连接两轻环A、B,两环分别套在相互垂直的水平杆和竖直杆上,轻绳绕过光滑的轻小滑轮,重物悬挂于滑轮下,始终处于静止状态,下列说法正确的是( ) A.只将环A向下移动少许,绳上拉力变大,环B所受摩擦力变小 B.只将环A向下移动少许,绳上拉力不变,环B所受摩擦力不变 C.只将环B向右移动少许,绳上拉力变大,环A所受杆的弹力不变 C.只将环B向右移动少许,绳上拉力不变,环A所受杆的弹力变小 答案 B 设滑轮两侧绳子与竖直方向的夹角为α,绳子的长度为L,B点到墙壁的距离为s,根据几何知识和对称性,得:sin α=sL ①,以滑轮为研究对象,设绳子拉力大小为F,根据平衡条件得:2F cos α=mg,得F=mg2cosα ② 当只将绳的左端向下移动少许,s和L均不变,则由②式得知,F不变,故A错误B正确;当只将绳的右端向右移动少许,s增加,而L不变,则由①式得知,sin α增大,cos α减小,则由②式得知,F增大,故C、D错误。 4.如图所示,竖直平面内有一光滑直杆AB,杆与水平方向的夹角为θ(0°≤θ≤90°),一质量为m的小圆环套在直杆上,给小圆环施加一与该竖直平面平行的恒力F,并从A端由静止释放,改变直杆和水平方向的夹角θ,当直杆与水平方向的夹角为30°时,小圆环在直杆上运动的时间最短,重力加速度为g,则下面说法错误的是( ) A.恒力F沿与水平方向成30°角斜向右下的方向 B.当小圆环在直杆上运动的时间最短时,小圆环与直杆间必无挤压 C.若恒力F的方向水平向右,则恒力F的大小为3mg D.恒力F的最小值为32mg 答案 A 根据题意,小圆环在直杆上运动的时间最短,则加速度最大,即恒力F与重力的合力方向沿杆的方向,那么恒力F的方向不确定,故A错误;要使时间最短,则加速度最大,即不论F多大,沿何种方向,力F与mg的合力方向沿杆向下,当恒力F的方向水平向右,受力如图所示,小圆环与直杆间必无挤压 则有:F=mgtan30°=3mg,故B、C正确;合力F合与mg、F三力可构成矢量三角形,如图所示: 由图可知,当F与F合垂直时,即与斜面垂直时,F有最小,则有:Fmin=mg sin 60°=32mg,故D正确。 5.如图所示是一旅行箱,它既可以在地面上推着行走,也可以在地面上拉着行走。已知该旅行箱的总质量为15 kg,一旅客用斜向上的拉力拉着旅行箱在水平地面上做匀速运动,若拉力的最小值为90 N,此时拉力与水平方向间的夹角为θ,重力加速度大小为g=10 m/s2,sin 37°=0.6,旅行箱受到地面的阻力与其受到地面的支持力成正比,比值为μ,则( ) A.μ=0.5,θ=37° B.μ=0.5,θ=53° C.μ=0.75,θ=53° D.μ=0.75,θ=37° 答案 D 对物体受力分析,如图所示: 根据平衡条件,水平方向,有:F cos θ-f=0, 竖直方向,有:N+F sin θ-G=0, 其中:f=μN, 故F=μGcosθ+μsinθ 令μ= tan α,则F=Gsinαcos(α-θ); 当α-θ=0°时,F有最小值,故F=G sin α=90 N,故α=37°, 故μ= tan 37°=0.75,θ=37°;故选D。 6.如图所示为一简易起重装置,AC是上端带有滑轮的固定支架BC为质量不计的轻杆,杆的一端C用较链固定在支架上,另一端B悬挂一个质量为m的重物,并用钢丝绳跨过滑轮A连接在卷扬机上。开始时,杆BC与AC的夹角∠BCA>90°,现使∠BCA缓缓变小, 直到∠BCA=30°。在此过程中,杆BC所受的力(不计一切阻力)( ) A.逐渐增大 B.先减小后增大 C.大小不变 D.先增大后减小 答案 C 以结点B为研究对象,分析受力情况,作出力的合成图如图,根据平衡条件则知,F、N的合力F合与G大小相等、方向相反。 根据三角形相似得:F合AC=FAB=NBC,又F合=G,得:F=ABACG,N=BCACG,现使∠BCA缓慢变小的过程中,AB变小,而AC、BC不变,则得到,F变小,N不变,所以绳子越来越不容易断,作用在BC杆上的压力大小不变;故选C。 7.哥伦比亚大学的工程师研究出一种可以用于人形机器人的合成肌肉,可模仿人体肌肉做出推、拉、弯曲和扭曲等动作。如图所示,连接质量为m的物体的足够长细绳ab一端固定于墙壁,用合成肌肉做成的“手臂”ced的d端固定一滑轮,c端固定于墙壁,细绳绕过滑轮,c和e类似于人手臂的关节,由“手臂”合成肌肉控制。设cd与竖直墙壁ac夹角为θ,不计滑轮与细绳的摩擦,下列说法正确的是( ) A.若保持θ不变,增大cd长度,细绳ad部分拉力变大 B.若保持θ=90°,增大cd长度,细绳对滑轮的力始终沿dc方向 C.若保持ac等于ad,增大cd长度,细绳对滑轮的力始终沿dc方向 D.若θ从90°逐渐变为零,cd长度不变,且保持ac>cd,则细绳对滑轮的力先减小后增大 答案 C 细绳ad的拉力大小等于物体的重力,则若保持θ不变,增大cd长度,细绳ad部分拉力不变,选项A错误;若保持θ=90°,细绳对滑轮的力与ad绳和bd绳拉力的合力等大反向,因Tad=Tab=mg,则ad绳和bd绳拉力的合力方向指向左下方,则细绳对滑轮的力方向指向右上方,不沿dc方向,选项B错误;若保持ac=ad,则∠acd=∠adc=∠cdb,则此时ad绳和bd绳拉力的合力方向沿dc方向,即使增大cd长度,上述关系仍然不变,即细绳对滑轮的力始终沿dc方向,选项C正确;若θ从90°逐渐变为零,cd长度不变,且保持ac>cd,则ad与ac的夹角先增大后减小,ad与db的夹角先减小后增加,则ad绳和bd绳拉力的合力先增大后减小,即细绳对滑轮的力先增大后减小,选项D错误;故选C。 8.如图所示,光滑固定斜面上有一个质量为10 kg的小球被轻绳拴住悬挂在天花板上,已知绳子与竖直方向的夹角为45°,斜面倾角30°,整个装置处于静止状态,(g取10 m/s2);求: (1)绳中拉力的大小和斜面对小球支持力的大小; (2)若另外用一个外力拉小球,能够把小球拉离斜面,求最小的拉力的大小。 答案 (1)51.8 N 73.2 N (2)70.7 N 解析 (1)如图,水平竖直建立直角坐标系,对小球做受力分析,把不在轴上的力沿轴分解,列平衡方程如下 T sin 45°-N sin 30°=0 T cos 45°+N cos 30°-mg=0 由以上两式得:N=73.2 N;T=51.8 N (2)当拉力与绳子相垂直时拉力有最小值,拉力的最小值为: Fm=mg sin 45° 代数解得:Fm=70.7 N查看更多