【物理】2019届一轮复习人教版 洛伦兹力 带电粒子在磁场中的运动 学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【物理】2019届一轮复习人教版 洛伦兹力 带电粒子在磁场中的运动 学案

第41讲 洛伦兹力 带电粒子在磁场中的运动 ‎1.会计算洛伦兹力的大小,并能判断其方向.‎ ‎2.掌握带电粒子在匀强磁场中的匀速圆周运动,并能解决确定圆心、半径、运动轨迹、周期、运动时间等相关问题.‎ 一、洛伦兹力 ‎1.洛伦兹力:磁场对运动电荷的作用力叫洛伦兹力.‎ ‎2.洛伦兹力的方向 ‎(1)判定方法 左手定则:掌心——磁感线垂直穿入掌心;‎ 四指——指向正电荷运动的方向或负电荷运动的反方向;‎ 拇指——指向洛伦兹力的方向.‎ ‎(2)方向特点:F⊥B,F⊥v,即F垂直于B和v决定的平面(注意:洛伦兹力不做功).‎ ‎3.洛伦兹力的大小 ‎(1)v∥B时,洛伦兹力F=0.(θ=0°或180°)‎ ‎(2)v⊥B时,洛伦兹力F=qvB.(θ=90°)‎ ‎(3)v=0时,洛伦兹力F=0.‎ 二、带电粒子在匀强磁场中的运动 ‎1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.‎ ‎2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.‎ 考点一 洛伦兹力的特点与应用 ‎1.洛伦兹力的特点 ‎(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.‎ ‎(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.‎ ‎(3)运动电荷在磁场中不一定受洛伦兹力作用.‎ ‎(4)左手判断洛伦兹力方向,但一定分正、负电荷.‎ ‎(5)洛伦兹力一定不做功.‎ 总结: 洛伦兹力对运动电荷(或带电体)不做功,不改变速度的大小,但它可改变运动电荷(或带电体)速度的方向,影响带电体所受其他力的大小,影响带电体的运动时间等 ‎ ‎★重点归纳★‎ ‎1、洛伦兹力与电场力的比较 洛伦兹力 电场力 性质 磁场对在其中运动的电荷的作用力 电场对放入其中电荷的作用力 产生条件 v≠0且v不与B平行 电场中的电荷一定受到电场力作用 大小 F=qvB(v⊥B)‎ F=qE 力方向与场 方向的关系 一定是F⊥B,F⊥v,与电荷电性无关 正电荷受力与电场方向相同,负电荷受力与电场方向相反 做功情况 任何情况下都不做功 可能做正功、负功,也可能不做功 力为零时 场的情况 F为零,B不一定为零 F为零,E一定为零 作用效果 只改变电荷运动的速度方向,不改变速度大小 既可以改变电荷运动的速度大小,也可以改变电荷运动的方向 ‎2、洛伦兹力与安培力的联系及区别 ‎(1)安培力是洛伦兹力的宏观表现,二者是相同性质的力,都是磁场力.‎ ‎(2) 洛伦兹力对电荷不做功;安培力对通电导线可做正功,可做负功,也可不做功 ‎★典型案例★.如图中,电荷的速度方向、磁场方向和电荷的受力方向之间关系正确的是( )‎ A. ‎ B. ‎ C. ‎ D. ‎ ‎【答案】 A ‎★针对练习1★(多选)如图所示,质量为m,电荷量为+q的带电粒子,以不同的初速度两次从O点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M、N两点射出磁场,测得OM∶ON=3∶4,粒子重力不计,则下列说法中不正确的是(  )‎ A. 两次带电粒子在磁场中经历的时间之比为3∶4‎ B. 两次带电粒子在磁场中运动的路程长度之比为3∶4‎ C. 两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4‎ D. 两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3‎ ‎【答案】 AD ‎★针对练习2★图中a、b、c、d为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示。一带负电的粒子从正方形中心O点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是(  )‎ A. 向右 B. 向下 C. 向左 D. 向上 ‎【答案】 D 考点二 带电粒子在匀强磁场中的运动 ‎(1)如何确定“圆心”‎ ‎①由两点和两线确定圆心,画出带电粒子在匀强磁场中的运动轨迹.确定带电粒子运动轨迹上的两个特殊点(一般是射入和射出磁场时的两点),过这两点作带电粒子运动方向的垂线(这两垂线即为粒子在这两点所受洛伦兹力的方向),则两垂线的交点就是圆心,如图 (a)所示.‎ ‎②若只已知过其中一个点的粒子运动方向,则除过已知运动方向的该点作垂线外,还要将这两点相连作弦,再作弦的中垂线,两垂线交点就是圆心,如图(b)所示.‎ ‎③若只已知一个点及运动方向,也知另外某时刻的速度方向,但不确定该速度方向所在的点,如图(c)所示,此时要将其中一速度的延长线与另一速度的反向延长线相交成一角(∠PAM),画出该角的角平分线,它与已知点的速度的垂线交于一点O,该点就是圆心.‎ ‎(2)如何确定“半径 方法一:由物理方程求:半径;‎ 方法二:由几何方程求:一般由数学知识(勾股定理、三角函数等)计算来确定.‎ ‎(3)如何确定“圆心角与时间”‎ ‎①速度的偏向角φ=圆弧所对应的圆心角(回旋角)θ=2倍的弦切角α,如图(d)所示.‎ ‎②时间的计算方法.‎ 方法一:由圆心角求,‎ 方法二:由弧长求,‎ ‎★重点归纳★‎ ‎1、带电粒子在磁场中做匀速圆周运动的分析方法 ‎2、带电粒子在有界匀强磁场中运动时的常见情形 直线边界(粒子进出磁场具有对称性)‎ 平行边界(粒子运动存在临界条件)‎ 圆形边界(粒子沿径向射入,再沿径向射出)‎ ‎3、带电粒子在有界磁场中的常用几何关系 ‎(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点.‎ ‎(2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍.‎ ‎6、带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法 ‎(1)画轨迹:即画出运动轨迹,并确定圆心,用几何方法求半径. ‎ ‎(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系.‎ ‎(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.‎ ‎4、求解带电粒子在匀强磁场中运动的临界和极值问题的方法 由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件(①带电体在磁场中,离开一个面的临界状态是对这个面的压力为零;②射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切.),然后应用数学知识和相应物理规律分析求解.‎ ‎(1)两种思路 一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;‎ 二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值.‎ ‎(2)两种方法 一是物理方法:‎ ‎①利用临界条件求极值;‎ ‎②利用问题的边界条件求极值;‎ ‎③利用矢量图求极值.‎ 二是数学方法:‎ ‎①利用三角函数求极值;‎ ‎②利用二次方程的判别式求极值;‎ ‎③利用不等式的性质求极值;‎ ‎④利用图象法等.‎ ‎(3)从关键词中找突破口:许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.‎ ‎★典型案例★如图所示,以O为圆心的环状匀强磁场区域的磁感应强度B1=0.2T,环形磁场的内半径R1=0.5m,外半径R2=1.0m,带电粒子的比荷。AB连线过O点,A、B两点均在磁场内并分别位于磁场的两边界处。(不考虑粒子的重力及粒子间的相互作用,粒子的速度方向都与纸面平行,边界处于有磁场)求:‎ ‎(1)若A点有一粒子源,沿环状磁场半径方向由A点射入磁场的粒子,不能穿越磁场的最大速度多大?‎ ‎(2)若B点有一粒子源,从B点沿切线方向向右射入B1磁场区,为使粒子始终在磁场中运动不从边界离开磁场,则粒子的速度满足什么条件?‎ ‎【答案】 (1) (2)或 ‎ ‎★针对练习1★如图所示,在边长为L的正方形区域内存在垂直纸面向里的匀强磁场,其磁感应强度大小为B.在正方形对角线CE上有一点P,其到CF,CD距离均为 ,且在P点处有一个发射正离子的装置,能连续不断地向纸面内的各方向发射出速率不同的正离子.已知离子的质量为m,电荷量为q,不计离子重力及离子间相互作用力.‎ ‎(1)速率在什么范围内的所有离子均不可能射出正方形区域?‎ ‎(2)求速率为v=的离子在DE边的射出点距离D点的范围.‎ ‎【答案】 (1) (2)‎ ‎★针对练习2★如图所示,圆形区域中,圆心角为30°的扇面MON之外分布着垂直于纸面向里的匀强磁场,磁感应强度为B,一质量为m,带电量为-q的粒子,自圆心O点垂直于OM以速度v射入磁场,粒子能两次经过边界OM,不计粒子重力.‎ ‎(1)求粒子从射入到第一次穿过边界ON,在磁场中运动的时间;‎ ‎(2)求圆形区域的最小半径; ‎ ‎(3)若圆形区域无限大,现保持其它条件不变而将∠MON变为10°,粒子射出后穿越磁场边界的次数.‎ ‎【答案】 (1) (2) (3)15‎
查看更多

相关文章

您可能关注的文档