- 2021-05-25 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【物理】2020届二轮复习动量和能量的综合应用作业
2020届二轮复习 动量和能量的综合应用 作业 (建议用时:40分钟) [专题通关练] 1.(多选)(2019·湖南湘东六校联考)质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定在其左侧,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,两物块通过弹簧相互作用(未超出弹簧弹性限度)并最终弹开,则( ) A.两物块在压缩弹簧的过程中,两物块组成的系统动量守恒 B.当两物块相距最近时,甲物块的速度为零 C.甲物块的速率可能为5 m/s D.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s AD [甲、乙两物块在压缩弹簧的过程中,两物块组成的系统所受合外力为零,系统动量守恒,选项A正确;当两物块相距最近时,两物块速度相等,甲物块的速度不为零,选项B错误;若甲物块的速率为5 m/s,根据动量守恒定律可得此时乙物块的速率为6 m/s或4 m/s,两物块组成的系统机械能增大,违反了能量守恒定律,选项C错误;当甲物块的速率为1 m/s,方向向左时,选取向右为速度的正方向,根据动量守恒定律,m·4 m/s-m·3 m/s=mv-m·1 m/s,解得乙物块的速率v=2 m/s,选项D正确。] 2.(原创题)(多选)一艘帆船在湖面上顺风航行,在风力的推动下做速度为v0=4 m/s的匀速直线运动。已知帆船在该运动状态下突然失去风的推力的作用,此后帆船在湖面上做匀减速直线运动,经过时间t0=8 s后静止不动;该帆船的帆面正对风的有效面积为S=10 m2,帆船的总质量约为M=936 kg,若帆船在行驶过程中受到的阻力恒定不变,空气的密度为ρ=1.3 kg/m3,下列说法正确的是( ) A.帆船失去风的推力后加速度大小是1 m/s2 B.帆船在湖面上顺风航行时所受水的阻力大小为468 N C.帆船匀速运动时受到风的推力的大小为936 N D.风速的大小为10 m/s BD [帆船失去风的推力后,只受到水的阻力f的作用,做匀减速直线运动,设帆船的加速度大小为a,则a==0.5 m/s2,选项A错误;以帆船为研究对象,由牛顿第二定律可得f=Ma,代入数据解得f=468 N,选项B正确;设帆船匀速运动时受到风的推力大小为F,根据平衡条件得F-f=0,解得F=468 N,选项C错误;设在时间t内,以正对帆面且吹向帆面的空气为研究对象,且其质量为m,则m=ρS(v-v0)t,根据动量定理有-Ft=mv0-mv,解得v=10 m/s,选项D正确。] 3.(一题多解)(2019·武汉示范高中联考)如图所示,子弹水平射入放在光滑水平地面上静止的木块,子弹未穿透木块,此过程木块的动能增加了6 J,那么此过程产生的内能可能为( ) A.16 J B.2 J C.6 J D.4 J A [法一 设子弹的质量为m0,初速度为v0,木块的质量为m,则子弹打入木块的过程中,子弹与木块组成的系统动量守恒,即m0v0=(m+m0)v,此过程中产生的内能等于系统损失的动能,即E=m0v-(m+m0)v2,而木块获得的动能Ek木=mv2=6 J,上述式子联立可得=>1,故E>6 J,A项正确。 法二 作出子弹和木块运动的vt图象,由图象可知,子弹和木块的相对位移Δx的大小一定大于木块的对地位移x木的大小,即Δx>x木,设摩擦力为f,则系统产生的热量Q=fΔx,对木块应用动能定理有fx木=Ek木,可得Q>Ek木=6 J,A项正确。] 4.(多选)A、B 两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a、b分别为A、B两球碰前的位移随时间变化的图象,c为碰撞后两球共同运动的位移随时间变化的图象,若A球质量是m=2 kg,则由图判断下列结论正确的是( ) A.碰撞前、后A球的动量变化量为4 kg·m/s B.碰撞时A球对B球所施的冲量为-4 N·s C.A、B两球碰撞前的总动量为3 kg·m/s D.碰撞中A、B两球组成的系统损失的动能为10 J ABD [根据图象可知,碰前A球的速度vA=-3 m/s,碰前B球的速度vB=2 m/s,碰后A、B两球共同的速度v=-1 m/s,故碰撞前、后A球的动量变化量为ΔpA=mv-mvA=4 kg·m/s,选项A正确;A球的动量变化量为4 kg·m/s,碰撞过程中动量守恒,B球的动量变化量为-4 kg·m/s,根据动量定理,碰撞过程中A球对B球所施的冲量为-4 N·s,选项B正确;由于碰撞过程中动量守恒,有mvA+mBvB=(m+mB)v,解得mB= kg,故碰撞过程中A、B两球组成的系统损失的动能为ΔE=mv+mBv-(m+mB)v2=10 J,选项D正确;A、B两球碰撞前的总动量为p=mvA+mBvB=(m+mB)v=- kg·m/s,选项C错误。] 5.(多选)如图所示,动量分别为pA=12 kg·m/s、pB=13 kg·m/s的两个小球A、B在光滑的水平面上沿一直线向右运动,经过一段时间后两球发生正碰,分别用ΔpA、ΔpB表示两小球动量的变化量,则下列选项中可能正确的是( ) A.ΔpA=-3 kg·m/s,ΔpB=3 kg·m/s B.ΔpA=-2 kg·m/s,ΔpB=2 kg·m/s C.ΔpA=-24 kg·m/s,ΔpB=24 kg·m/s D.ΔpA=3 kg·m/s,ΔpB=-3 kg·m/s AB [本题属于追及碰撞问题,碰前,后面运动物体的速度一定要大于前面运动物体的速度(否则无法实现碰撞),碰后,前面物体的动量增大,后面物体的动量减小,减小量等于增大量,所以ΔpA<0,ΔpB>0,并且ΔpA=-ΔpB。据此可排除选项D;若ΔpA=-24 kg·m/s、ΔpB=24 kg·m/s,碰后两球的动量分别为p′A=-12 kg·m/s、p′B=37 kg·m/s,根据关系式Ek=可知,A球的质量和动量大小不变,动能不变,而B球的质量不变,但动量增大,所以B球的动能增大,这样系统的机械能比碰前增大了,选项C可以排除;经检验,选项A、B满足碰撞遵循的三个原则。] 6.(多选)在冰壶比赛中,某队员利用红壶去碰撞对方的黄壶,两者在大本营中心发生对心碰撞,如图(a)所示,碰后运动员用冰壶刷摩擦黄壶前进方向的冰面来减小阻力,碰撞前后两壶运动的vt图线如图(b)中实线所示,其中红壶碰撞前后的图线平行,两冰壶质量均为19 kg,则( ) A.碰后黄壶的速度为0.8 m/s B.碰后黄壶移动的距离为2.4 m C.碰撞过程两壶损失的动能为7.22 J D.碰后红、黄两壶所受摩擦力大小之比为5∶4 AD [由图可知碰撞前后红壶的速度为v0=1 m/s和v1=0.2 m/s,由动量守恒可得mv0=mv1+mv2,解得碰后黄壶速度为v2=0.8 m/s,碰后黄壶移动的距离为x=×0.8×5 m=2 m,碰撞过程两壶损失的动能为ΔEk=mv-mv-mv=3.04 J,红壶所受摩擦力f1=ma1=19× N=3.8 N,黄壶所受摩擦力f2=ma2=19× N=3.04 N.碰后红、黄两壶所受摩擦力之比为f1∶f2=5∶ 4,故A、D正确,B、C错误.] 7.(多选)(2019·山东济南高三质量评估)如图所示,一质量为3m的容器静止在光滑水平面上,该容器的内壁是半径为R的光滑半球面,在容器内壁的最高点由静止释放一质量为m的小滑块P,重力加速度为g。下列说法正确的是( ) A.P滑到最低点时的动能为mgR B.P从开始到最低点的过程中机械能减少了 C.P经过最低点后沿内壁继续上滑的最大高度小于R D.P经过最低点后沿内壁继续上滑的最大高度等于R BD [小滑块由最高点运动到最低点的过程,容器和小滑块组成的系统水平方向动量守恒,则由动量守恒定律可知0=mvP-3mv,又由机械能守恒定律得mgR=mv+×3mv2,解得v=,vP=3,则小滑块在最低点的动能为EkP=mgR,该过程中小滑块减少的机械能为ΔE=mgR-mgR=mgR,A错误,B正确;假设小滑块沿内壁上滑的最大高度为h,则对小滑块和容器组成的系统,由动量守恒定律和机械能守恒定律得mvP-3mv=4mv′,mgR=mgh+×4mv′2,解得v′=0,h=R,C错误,D正确。] 8.(原创题)(多选)如图所示,半径为R的圆弧轨道固定在水平面上,圆弧轨道底端和水平面相切,质量分别为5m和3m的物体B和C用一质量不计的弹簧连接放在水平面上,其中物体B左端刚好位于圆弧轨道圆心的正下方,质量为m的物体A由与圆心等高的位置从圆弧上静止释放,经一段时间物体A与物体B发生碰撞,碰撞后物体A沿原路返回,A上升的最高点距水平面的高度为。假设三个物体均可视为质点、一切摩擦和阻力均可忽略,重力加速度为g。下列说法正确的是( ) A.物体A、B碰后瞬间,物体A的速度大小为 B.物体A、B相互作用的过程中,物体A对物体B的冲量大小为m C.弹簧所储存的弹性势能的最大值为mgR D.碰后物体C具有的最大速度应为 ACD [物体A运动到圆弧轨道最低点与物体B碰撞前的速度大小记为v1,取轨道的最低点的重力势能为零,根据机械能守恒定律有mgR=mv,解得v1=,碰撞后瞬间物体A的速度大小记为v′1,同理有=mv′,解得v′1=,碰撞后瞬间物体B的速度大小记为v2,取水平向右为正方向,对A、B组成的系统由动量守恒定律有mv1=-mv′1+5mv2,解得v2=,由动量定理可得,碰撞过程中物体B受到的冲量大小为I=5mv2=m,A正确,B错误;碰撞结束后,物体B与物体C的速度相等时弹簧储存的弹性势能最大,根据动量守恒定律有5mv2=8mv3,根据机械能守恒定律有,弹簧储存的最大弹性势能Epm=×5mv-×8mv,解得Epm=mgR,C正确;对物体B、物体C与弹簧组成的系统而言,当弹簧再次恢复到原长时,物体C的速度最大,根据动量守恒定律和机械能守恒定律,有8mv3=5mv′2+3mvC,Epm+×8mv=×5mv′+×3mv,解得vC=,D正确。] [能力提升练] 9.(多选)(2019·东北六校理综联考)如图所示,质量分别为m1、m2的两物体A、B与轻弹簧拴接,一起静止在光滑水平面上,m1>m2。现用锤子两次分别敲击A和B,使它们均获得大小相同的初动量,当敲击A 时弹簧压缩到最短的长度为L1,锤子对A做的功为W1;敲击B时弹簧压缩到最短的长度为L2,锤子对B做的功为W2,则L1与L2及两次锤子做的功W1和W2的大小关系正确的是( ) A.L1>L2 B.L1查看更多
相关文章
- 当前文档收益归属上传用户